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Abstract:	We	attempt	to	explain	stock	market	dynamics	in	terms	of	the	interaction	among	

three	 variables:	 market	 price,	 investor	 opinion	and	 information	 flow.	 We	 propose	 a	

framework	 for	 such	 interaction	 and	 apply	 it	 to	 build	 a	model	 of	 stock	market	 dynamics	

which	 we	 study	 both	 empirically	 and	 theoretically.	 We	 demonstrate	 that	 this	 model	

replicates	 observed	 market	 behavior	 on	 all	 relevant	 timescales	 (from	 days	 to	 years)	

reasonably	 well.	 Using	 the	 model,	 we	 obtain	 and	 discuss	 a	 number	 of	 results	 that	 pose	

implications	for	current	market	theory	and	offer	potential	practical	applications.			
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Introduction			

There	is	a	simple	chain	of	events	that	leads	to	price	changes.	Prices	change	when	investors	buy	or	

sell	securities	and	it	is	the	flow	of	information	that	influences	the	opinions	of	investors,	according	to	

which	 they	make	 investment	decisions.	Although	 this	description	 is	 too	 general	 to	be	of	practical	

use,	it	highlights	the	point	that	with	the	correct	choice	of	hypotheses	about	how	prices,	opinions	and	

information	interact	it	could	be	possible	to	model	market	dynamics.		

In	 the	 first	 part	 of	 this	 paper	 (Section	 1),	we	 develop	 a	mechanism	 that	 links	 information	 to	

opinions	and	opinions	to	prices.	First,	we	select	the	market	for	US	stocks	as	the	object	of	study	due	

to	 its	depth,	breadth	and	high	standing	 in	the	financial	community,	which	places	 it	 in	 the	focus	of	

global	financial	news	media	resulting	in	the	dissemination	of	large	amounts	of	relevant	information.	

We	 then	 collect	 information	 using	 proprietary	 online	 news	 aggregators	 as	well	 as	 news	 archives	

offered	 by	 data	 providers.	 Next	 we	 analyze	 collected	 news	 with	 respect	 to	 their	 influence	 on	

investors’	market	views.	Our	approach	 is	 to	 treat	each	 individual	news	 item	as	 if	 it	were	 a	 “sales	

pitch”	that	motivates	investors	to	either	enter	into	or	withdraw	from	the	market	and	apply	methods	

from	marketing	research	to	assess	effectiveness.	

We	 then	 proceed	 to	model	 opinion	 dynamics.	 It	 is	 reasonable	 to	 expect	 that,	 along	 with	 the	

impact	 of	 information,	 such	 a	 model	 should	 also	 account	 for	 interactions	 among	 investors	 and	

various	 idiosyncratic	 factors	 that	 can	 be	 assumed	 to	 act	 as	 random	 disturbances.	 There	 are	

similarities	 between	 this	 problem	 and	 some	 well‐studied	 problems	 in	 statistical	 mechanics,	

allowing	us	to	borrow	from	the	existing	toolkit	to	derive	an	equation	for	the	evolution	of	 investor	

opinion	 in	 analytic	 form.	 At	 this	 juncture,	 we	 investigate	 the	 connection	 between	 opinions	 and	

prices.	To	understand	it,	we	must	answer	questions	pertaining	to	how	investors	make	decisions;	for	

instance,	 is	 an	 investor	 more	 likely	 to	 invest	 if	 her	 market	 outlook	 has	 been	 stably	 positive	 or	

whether	 it	 has	 recently	 improved?	 We	 suggest	 a	 simple	 solution	 based	 on	 observed	 investor	

behavior.		
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The	procedure	described	above	is	used	to	construct	a	time	series	of	daily	prices	from	1996	to	

2012	based	on	 collected	 information	 and	 compare	 it	with	 the	 time	 series	 of	 actual	market	prices	

from	 that	 same	period.	We	demonstrate	 that	 the	model	 replicates	 the	 observed	market	 behavior	

over	the	studied	period	reasonably	well.	In	the	end	of	Section	1	we	report	and	discuss	results	that	

may	be	relevant	for	market	theory	and	practical	application.		

Although	 this	 (empirical)	model	 enables	us	 to	 translate	 a	 given	 information	 flow	 into	market	

prices,	 it	 cannot	 sufficiently	 highlight	 the	 nature	 of	 complex	 market	 behaviors	 precisely	 for	 the	

reason	that	information	is	treated	in	the	model	as	a	given.	To	gain	further	insight	into	the	origins	of	

market	dynamics	we	must	extend	this	framework	by	including	information	as	a	variable,	along	with	

investor	 opinion	 and	market	 price.	 In	 the	 second	 part	 of	 this	 paper	 (Section	 2),	 we	 incorporate	

assumptions	on	how	information	can	be	generated	and	channeled	throughout	the	market	to	develop	

a	closed‐form,	self‐contained	model	of	stock	market	dynamics	for	theoretical	study.		

We	 find	 that	 information	supplied	 to	 the	market	 can	be	 represented	by	 two	components	 that	

play	important	but	different	roles	in	market	dynamics.	The	first	component,	which	consists	of	news	

caused	by	price	 changes	 themselves,	 induces	 a	 feedback	 loop	whereby	 information	 impacts	price	

and	 price	 impacts	 information.	 The	 resulting	 nonlinear	 dynamic	 explains	 the	 appearance	 in	 the	

model	of	essential	elements	of	market	behavior	such	as	trends,	rallies	and	crashes	and	leads	to	the	

familiar	non‐normal	shape	of	 the	return	distribution.	Additionally,	 this	dynamic	entails	a	complex	

causal	relation	between	information	and	price,	as	cause	and	effect	become,	in	a	sense,	intertwined.		

The	 second	 informational	 component	 contains	 any	 other	 relevant	 news.	 It	 acts	 as	 a	 random	

external	force	that	drives	market	dynamics	away	from	equilibrium	and,	from	time	to	time,	triggers	

changes	of	market	regimes.		
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We	 conclude	 Section	 2	 by	 comparing	 the	 characteristic	 behaviors	 of	 theoretically‐modeled,	

empirically‐modeled	 and	 observed	 market	 prices	 and	 by	 discussing	 the	 possibility	 of	 market	

forecasts.	Finally,	we	provide	an	overall	summary	of	conclusions	in	Section	3.				

The	present	study	has	been	carried	out	with	a	view	toward	potentially	predicting	stock	market	

returns.	This	view	is	supported	by	the	empirical	research	over	the	last	30	years,	which	suggests	that	

returns	are	predictable,	especially	over	long	horizons	(see	Fama	and	French	(1988,	1989),	Campbell	

and	Shiller	(1988a,b),	Cochrane	(1999,	2008),	Baker	and	Wurgler	(2000),	Campbell	and	Thompson	

(2008)).	 This	 empirical	 research	 has	 primarily	 focused	 on	 identifying	 potentially	 predictive	

variables,	such	as	the	dividend	yield,	earnings‐price	ratio,	credit	spread	and	others,	and	verifying	or	

refuting	their	correlation	with	subsequent	returns,	typically	applying	regression	methods.		

Our	objective	is	to	capture	the	basic	mechanisms	underlying	this	predictability.1	We	show	that	

the	 theoretical	 model	 (Section	 2),	 which	 treats	 information,	 opinion	 and	 price	 as	 endogenous	

variables,	can	reproduce	observed	market	features	reasonably	well,	including	the	price	path	and	the	

return	 distribution,	 under	 the	 realistic	 choice	 of	 parameter	 values	 consistent	 with	 the	 values	

obtained	using	the	empirical	data	(Section	1).	Most	importantly,	this	model	permits	market	regimes	

where	deterministic	dynamics	dominate	random	behaviors,	implying	that	returns	are,	in	principle,	

predictable.	Because	this	model	is	fundamentally	nonlinear,	the	causal	relation	among	the	variables	

                                                            

1	The	existing	literature	examines	the	long‐term	predictability	(e.g.	monthly	and	annual	returns)	and	links	

it	 to	 economic	 fluctuations	 and	 changes	 in	 risk	perception	of	 investors.	Our	 findings	 support	 the	 view	 that	

long‐term	predictability	exists	and,	furthermore,	indicate	that	returns	may	already	be	predictable	on	intervals	

of	several	days.	We	reach	this	conclusion	using	a	framework	which	attributes	price	changes	to	the	dynamics	of	

investor	opinion.	Interestingly,	we	find	that,	over	long	horizons,	there	is	a	connection	between	the	evolution	of	

investor	opinion	and	economic	fluctuations	(Fig.	9,	Section	1.4.1).			
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is	 substantially	more	 complex	 than	 regression	dependence.	 It	 therefore	 follows	 that	 the	 standard	

approach	 to	 return	 prediction,	 based	 on	 regression	methods,	may	 need	 to	 be	 redefined.	 Such	 an	

approach	would	combine,	analogous	to	weather	forecasting,	theoretical	models	with	empirical	data	

to	predict	returns	(see	Section	2.2.3).	

The	stock	market	model	developed	in	this	paper	belongs	to	the	family	of	Ising‐type	models	from	

statistical	 mechanics	 (see	 Section	 1.2.1.).	 The	 Ising	 model	 is	 a	 subset	 of	 agent‐based	 models	 –	

theoretical	 models	 that	 attempt	 to	 explain	 macroscopic	 phenomena	 based	 on	 the	 behaviors	 of	

individual	 agents.	 When	 applied	 to	 economics,	 the	 Ising	 model	 simulates	 dynamics	 among	

interacting	 agents	 capable	 of	making	 discrete	 decisions	 (e.g.	 buy,	 sell	 or	 hold)	 subject	 to	 random	

fluctuations	(due	to	idiosyncratic	disturbances)	and,	if	any,	external	influence	(e.g.	publicly	available	

information)	and	various	constraints	(e.g.	wealth	optimization).	As	there	are	numerous	choices	for	

factors	 affecting	 the	 dynamics	 of	 agents,	 the	 main	 goal	 is	 the	 selection	 of	 a	 reasonably	 simple	

combination	that	allows	the	replication	of	distinctive	features	of	actual	market	behavior	in	a	model.	

A	number	of	agent‐based	models	have	been	proposed	in	the	context	of	financial	markets,	e.g.	Levy,	

Levy	 and	 Solomon	 (1994,	 1995),	 Caldarelli,	 Marsili	 and	 Zhang	 (1997),	 Lux	 and	 Marchesi	 (1999,	

2000),	 Cont	 and	 Bouchaud	 (2000),	 Sornette	 and	 Zhou	 (2006),	 Zhou	 and	 Sornette	 (2007).	 These	

models	differ	by	 choices	made	 in	 the	 selection	of	 factors,	 such	as,	 for	 example,	 the	 form	of	 agent	

heterogeneity,	the	topology	of	 interaction,	the	number	of	decision‐making	choices,	the	form	of	the	

agents’	utility	functions	and	the	nature	of	external	influence	on	agents.		

In	the	present	model	we	chose	to	apply	the	minimal	number	of	possible	opinions	(buy	or	sell)	

and	 the	 simplest	 interaction	 pattern	 (all‐to‐all)	 to	 facilitate	 its	 study.	 We	 also	 made	 no	 a	 priori	

assumptions	on	investors’	behaviors,	preferences	or	trading	strategies.	Our	contribution	is	focused	

on	 other	 areas.	 First,	 we	 identify	 informational	 patterns	 that	 can	 effectively	 influence	 investors’	

opinions	 and	 measure	 the	 corresponding	 information	 flow	 (Section	 1.1).	 Second,	 we	 analyze	

opinion	 dynamics	 in	 the	 presence	 of	 this	 information	 flow	 using	 a	 classic	 (homogeneous)	 Ising	
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model	and	construct	an	empirical	time	series	describing	the	evolution	of	investor	opinion	(Section	

1.2).	Third,	we	deduce	the	relation	between	investor	opinion	and	market	price.	While	in	the	existing	

literature	opinions	are	typically	equated	with	investment	decisions,	resulting	in	price	changes	being	

proportional	 to	 the	 difference	 between	 the	 number	 of	 positive	 opinions	 (buyers)	 and	 negative	

opinions	 (sellers)	 in	 a	 model	2,	 we	 derive	 an	 equation	 for	 price	 formation	 by	 proposing	 that	

investors	 tend	 to	 act	 on	 their	 opinions	 differently	 over	 short	 and	 long	 horizons	 and	 use	 this	

equation	 to	 obtain	an	empirical	 time	 series	 of	model	prices	 (Section	1.3).	 Fourth,	we	 formulate	 a	

theoretical	model	of	market	dynamics	as	a	heterogeneous	Ising	model	(Section	2)	which	consists	of	

two	 types	 of	 agents:	 investors	 (whose	 function	 is,	 naturally,	 to	 invest	 and	 divest)	 and	 “analysts”	

(whose	 function	 is	 to	 interpret	 news,	 form	 opinions	 and	 channel	 them	 to	 investors).	 This	model	

yields	 a	 closed‐form,	 nonlinear	 dynamical	 system	 shown	 to	 generate	 behaviors	 that	 are	 in	

agreement	with	both	the	empirical	model	and	the	actual	market.			

This	paper,	which	is	primarily	intended	for	economists	and	investment	professionals,	 is	based	

on	 ideas	 and	 methods	 from	 various	 scientific	 and	 practical	 disciplines,	 including	 statistical	

mechanics	 and	 dynamical	 systems.	 To	 preserve	 its	 readability,	 we	 have	 endeavored	 to	 strike	 a	

balance	between	 the	depth	of	 the	material	 and	 the	ease	 of	 its	 presentation.	To	 this	 end,	we	have	

placed	 technical	 discussions	 and	 derivations	 in	 the	 appendices	 and	 provided	 the	 first	 principles‐

based	explanations	of	utilized	concepts	to	make	the	work	self‐contained.	

1.	Part	I	–	Empirical	study	of	stock	market	dynamics	

In	the	empirical	study	we	develop	a	model	 that	translates	 information	 into	opinions	and	opinions	

into	prices.	Section	1.1	examines	which	information	can	be	relevant	in	the	financial	markets	context	

                                                            

2	Sometimes	price	 changes	 are	 assumed	 to	be	proportional	 to	 a	 function	 of	 the	difference	 between	 the	

number	of	positive	and	negative	opinions,	e.g.	Zhang	(1999)	applied	a	square	root	of	this	difference.	
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and	outlines	our	approach	 to	measuring	 it	and	constructing	 the	empirical	 time	series.	Section	1.2	

derives	 a	model	 of	 opinion	 dynamics	 and	 applies	 it	 to	 the	 time	 series	 from	 the	 previous	 section.	

Section	 1.3	 develops	 a	 model	 of	 price	 formation	 that,	 based	 on	 the	 modeled	 investor	 opinion,	

produces	 the	 empirical	 prices	 for	 comparison	 with	 the	 actual	 stock	 market	 prices.	 Section	 1.4	

discusses	results	and	applications.	The	relevant	technical	details	are	in	Appendices	A	and	B.	

1.1.	Information			

Information	 comes	 in	 many	 forms.	 It	 differs	 across	 various	 dimensions	 such	 as	 content,	 source,	

pattern	 and	 distribution	 channel,	 and	 there	 are	 myriad	 possibilities	 for	 “slicing	 and	 dicing”	 it.	

Choices	 made	 on	 how	 information	 is	 handled	 may	 lead	 to	 different	 theories	 and	 practical	

applications.		

Different	 methods	 of	 handling	 information	 form	 the	 foundations	 of	 quintessentially	 different	

trading	 strategies	 in	 the	 field.	 For	 example,	 systematic	 hedge	 fund	 managers	 apply	 quantitative	

techniques	 to	 analyze	 price	 data	 to	 detect	 trends;	 global	 macro	 managers	 base	 their	 bets	 on	

macroeconomic	 factors;	 and	 fundamental	 long/short	 funds	 employ	 financial	 analysis	 to	 identify	

mispriced	assets.3		

                                                            

3	We	note	that	increases	in	the	quantity	of	information	on	the	internet	and	its	accessibility,	the	popularity	

of	social	networks	and	improvements	in	natural	language	processing	and	statistical	machine	learning	during	

the	 last	 decade	 have	 prompted	 the	 development	 of	 trading	 strategies	 where	 news	 analytics	 complement	

traditional	 sources	 of	 information.	 This	 has	 also	 motivated	 recent	 empirical	 research	 on	 the	 correlation	

between	disseminated	information,	including	social	media	content,	and	price	movements	(e.g.	Schumaker	and	

Chen	(2009);	Li	et	al.	(2011);	Rechenthin,	Street	and	Srinivasan	(2013);	Preis,	Moat	and	Stanley	(2013)).	This	

paper	 broadly	 shares	 the	 motivation	 and	 aims	 to	 advance	 research	 in	 this	 area	 by	 employing	 a	 novel	

approach.	
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In	 the	 theory	 of	 finance,	 a	 seminal	 hypothesis	 on	 information’s	 influence	 on	 investors	 –	 the	

efficient	 market	 hypothesis	 –	 was	 developed	 by	 Fama	 (1965,	 1970)	 and	 Samuelson	 (1965).	 The	

efficient	 market	 hypothesis	 essentially	 considers	 that,	 as	 a	 result	 of	 competition	 among	 rational	

investors,	information	related	to	past	events,	as	well	as	to	anticipated	future	events,	 is	reflected	in	

spot	prices.	This	theory	implies	that	prices	change	only	as	unexpected	new	information	is	received	

and,	because	such	information	is	random,	price	changes	must	also	be	random	variables	that	cannot	

be	predicted.	

	We	base	our	approach	on	the	observation	that	in	the	context	of	financial	markets	information	is	

important	only	due	to	its	impact	on	investors.	Therefore,	it	would	be	sensible	to	consider	only	those	

informational	 patterns	 that	 can	 effectively	 impact	 investors’	 decision	 making.	We	 put	 forward	 a	

hypothesis	 that	 the	 effectiveness	 of	 information	 is	 determined	 by	 the	 degree	 of	 directness	 of	 its	

interpretation	 in	 relation	 to	 the	 expectations	 of	 future	 market	 performance,	 and	 assume	 that	

information	which	is	more	direct	will	be	more	effectively	perceived	by	investors.		

We	will	test	this	hypothesis	on	empirical	data	in	the	next	sections.	Here	we	briefly	discuss	the	

rationale	behind	it.	The	basic	idea	is	intuitively	simple:	we	view	each	news	item	as	if	it	were	a	“sales	

pitch”	 to	 buy	 or	 sell	 the	 market	 aimed	 at	 investors.	 Sales	 professionals	 will	 confirm	 that	 a	

straightforward,	unambiguous	message	 is	 imperative	for	 it	to	be	effective,	and	 in	the	present	case	

the	least	ambiguous	message	is	the	one	that	tells	investors	directly	whether	the	market	is	expected	

to	go	up	or	down.			

Information	 that	 does	 not	 succinctly	 spell	 this	 message	 out	 requires	 individually	 subjective	

interpretation	leading	to	conflicting	views	as	to	its	implications	for	anticipated	market	performance.	

We	may	 suppose	 that	 news	which	 cannot	 be	 easily	 interpreted	 in	 terms	 of	market	 reaction	will	

result	 in	 a	 roughly	 equal	 number	 of	 positive	 and	 negative	 views	 or	 in	 a	 lack	 of	 strong	 opinions	

altogether	 and	 so	 in	 average	 are	 unlikely	 to	 impact	market	 prices.	 Conversely,	 news	 that	 can	 be	
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easily	 interpreted	will	 be	 quickly	 interpreted	 (or	will	 have	 already	been	 interpreted	prior	 to	 any	

news	 release	 as	 a	market	 scenario)	 and	will	 then	be	 followed	by	 information	about	 the	 expected	

market	 reaction.	 It	 therefore	 seems	 reasonable	 to	 conclude	 that	 information	 suggesting	 the	

direction	of	the	expected	market	movement	is	important	for	price	development.	The	quantifying	of	

such	patterns	–	henceforth	referred	to	as	direct	information	–	in	the	general	news	flow	is	an	area	of	

our	research	focus.		

Thus,	 in	 the	 general	 daily	 news	 flow,	we	wish	 to	measure	 the	 number	 of	 news	 releases	 that	

contain	this	direct	information.	We	limit	our	study	to	the	US	stock	market	and	select	the	S&P	500	

Index	 as	 its	 proxy.	 In	 particular,	 we	 consider	 only	 the	 English	 language	 media	 and	 search	 for	

patterns	 that	 indicate	 future	 returns,	 e.g.	 “the	 S&P	 500	will	 increase	 /	 decrease”,	 or	 those	which	

imply	a	 trend,	e.g.	 “the	S&P	500	has	grown	/	 fallen”,	assuming	 that	 investors	would	react	 to	such	

information	by	extrapolating	the	trend	into	the	future.		

We	have	chosen	not	to	assign	weights	to	news	items	as	a	measure	of	their	relative	importance.	

This	factor	should	emerge	naturally	by	capturing	the	repetitions	or	echoing	of	the	original	release	

by	 other	 news	 outlets.	 Thus,	 to	measure	 the	 direct	 information	 correctly,	 we	 collect	 all	 relevant	

news	releases4	including	the	duplicates.	

Based	on	the	above	considerations,	we	have	devised	a	number	of	rules	and	applied	them	to	daily	

news	data	for	the	period	from	1996	to	2012	retrieved	from	DJ/Factiva	database.	These	same	rules	

have	also	been	applied	to	the	news	that	we	have	directly	collected	on	a	daily	basis	from	online	news	

sources	since	2010	(one	of	the	advantages	of	assembling	a	proprietary	news	archive	is	the	ability	to	

control	the	selection	of	news	sources	to	ensure	data	consistency	over	time).	

                                                            

4	We	also	take	into	account	news	reach,	which	is	a	marketing	research	term,	referring	here	to	the	number	

of	people	exposed	to	a	news	outlet	during	a	given	period,	akin	to	a	newspaper’s	circulation.				
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We	measure	the	number	of	news	releases	containing	positive	or	negative	direct	information	for	

each	day	where	the	NYSE	was	open	for	business	during	1996‐2012	to	obtain	a	time	series	of	daily	

direct	information	ܪሺݐሻ	over	that	period:	

ሻݐሺܪ ൌ
ሻݐାሺܪ െ ሻݐሺିܪ

ሻݐሺ்ܪ
	,																																																								

where	ܪା	is	the	number	of	news	items	containing	positive	direct	 information,	ିܪ	is	the	number	of	

news	items	containing	negative	direct	information	and	்ܪ	is	the	number	of	all	relevant	news	items	

(e.g.	where	the	phrase	“S&P	500”	is	mentioned);	ordinarily,	்ܪ ൐ ାܪ ൅ 	neutral	contains	்ܪ	since	ିܪ

information	 along	 with	ܪା	and	ିܪ.	 For	 illustration,	 the	 time	 series	 of	 daily	ܪሺݐሻ	and	்ܪሺݐሻ	are	

displayed	on	a	sample	interval	2010‐2012	(Fig.	1).5	

                                                            

5	Technical	remarks:		

	the	over	develop	we	that	model	market	the	into	input	an	as	used	is	1996‐2012	for	DJ/Factiva	from	ሻݐሺܪ .1

next	 sections.	 In	 this	 context	 it	 is	 important	 to	 note	 that	 the	 volume	்ܪሺݐሻ	gradually	 rose	 during	 that	

period,	fluctuating	on	average	in	the	range	of	25‐50	per	day	in	1996‐2001,	50‐100	per	day	in	2002‐2009	

and	100‐200	per	day	in	2010‐2012.	Accordingly,	we	have	to	exercise	caution	with	regards	to	interpreting	

modeling	results	for	the	period	1996‐2001	due	to	lower	data	quality.	

	original	the	of	bias	positive	the	eliminate)	not	(but	reduce	to	calibrated	been	have	sources	both	from	ሻݐሺܪ .2

series.	This	has	been	achieved	by	increasing	the	weight	of	ܪ_ሺݐሻ	by	30%	in	the	case	of	DJ/Factiva	and	45%	

in	the	case	of	the	proprietary	data.	The	calibration	is	applied	to	achieve	more	realistic	model	behavior;	we	

note,	however,	that	the	results	obtained	with	and	without	the	calibration	are	not	substantially	different.	

The	excess	positive	bias	may	be	partially	related	to	general	asymmetry	in	the	perception	of	negative	and	

positive	events	(Baumeister	et	al.,	2001),	which,	for	example,	implies	an	aversion	to	losses	in	the	context	

of	financial	markets	(Kahneman	and	Tversky,	1979),	however	this	discussion	falls	outside	the	scope	of	the	

present	work.		
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whether	formed	through	rational	analysis	or	 irrational	beliefs,	based	on	all	possible	 informational	

inputs.6		

In	 the	 previous	 section	 we	 have	 proposed	 that	 direct	 information	 can	 effectively	 influence	

investors’	views.	In	this	section	we	use	an	analogy	from	physics	to	explore	how	investor	sentiment	

can	evolve	in	response	to	direct	information	flow.	

1.2.1.	Model	of	sentiment	dynamics		

In	this	section	we	make	a	first	principles‐based	introduction	to	the	Ising	model	(Ising,	1925)	from	

statistical	mechanics,	 as	 it	 applies	 to	 the	 problem	presented	 here,	 and	 follow	with	 a	 preliminary	

discussion	 of	 the	 relevant	 effects.	 Although	 the	 Ising	 model	 has	 been	 broadly	 applied	 to	 study	

                                                            

6 We	note	 that	 the	 term	 sentiment	 appears	 in	 the	 finance	 literature	 usually	 in	 the	 sense	 of	 an	 opinion	

prompted	by	feelings	or	beliefs,	as	opposed	to	an	opinion	reached	through	rational	analysis.	 In	this	context,	

the	 notion	 of	 sentiment	 has	 been	 applied	 to	 describe	 the	 driving	 forces	 behind	 price	 deviations	 from	

fundamental	 values	 that	 cannot	 be	 explained	 within	 the	 classic	 framework	 of	 rational	 decision	 making.	

Various	 empirical	measures	 of	 sentiment	 utilized	 in	 the	 literature	 (e.g.	 Brown	 and	 Cliff	 (2004),	 Baker	 and	

Wurgler	 (2007),	 Lux	 (2011))	 include	 indices	 based	 on	 periodic	 surveys	 of	 investor	 opinion	 as	well	 as	 the	

proxies	such	as	closed‐end	fund	discounts,	advancing	vs.	declining	issues,	call	vs.	put	contracts	and	others.		

Our	approach	relies	on	the	 fact	 that	 it	 is	 the	 investor	opinion	per	se	that	 leads	to	 investment	decisions,	

irrespective	of	whether	it	has	been	formed	rationally	or	irrationally.	The	understanding	of	how	this	summary	

opinion	 –	 which	 we	 have	 herein	 defined	 as	 sentiment	 –	 evolves	 is	 one	 of	 the	 goals	 of	 the	 present	 work.	

Accordingly,	 in	this	section	we	model	the	sentiment	dynamics	without	 invoking	explicit	assumptions	on	the	

rationality	 of	 agents	 and	 apply	 this	 model	 to	 obtain	 sentiment	 empirically	 from	 the	 time	 series	 of	 direct	

information	as	measured	in	Section	1.1.	 
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problems	 in	 social	 and	 economic	 dynamics,	 we	 have	 not	 come	 across	 its	 explanation	 from	 first	

principles	in	the	socioeconomic	context.	

We	consider	a	model	with	a	large	number	of	investors	(ܰ ≫ 1),	identical	in	all	respects	except	

the	ability	to	 form	differing	binary	opinions	(േ1)	as	 to	whether	the	market	will	rise	or	 fall.	Let	us	

say	 that	 the	݅‐th	 investor	 has	 the	 sentiment	ݏ௜ ൌ ൅1	if	 she	 opines	 that	 the	 market	 will	 rise	 and	

௜ݏ ൌ െ1	if	she	opines	that	the	market	will	fall.	We	introduce	a	function,	called	energy	in	physics,	that	

describes	 the	macroscopic	 states	of	 such	 a	 system.	This	 function	 should	 contain	 those	 factors	 for	

which	we	wish	to	account	in	the	model.	Basically,	there	are	two	such	factors.		

The	 first	 factor	captures	the	 impact	due	 to	 the	 flow	of	direct	 information.	Earlier	we	assumed	

that	 direct	 information,	 either	 positive	 (the	 market	 will	 go	 up)	 or	 negative	 (the	 market	 will	 go	

down),	can	be	effective	in	forcing	investors	to	change	their	opinions,	i.e.	direct	 information	acts	to	

orient	the	investors’	sentiments	along	its	(positive	or	negative)	direction.	We	express	the	energy	of	

impact	 on	 the	݅‐th	 investor	 as	െܪ௜ݏ௜	,	 where	ܪ௜	is	 direct	 information	 received	 by	 the	 investor.	

Energy	is	negative	where	the	investor’s	opinion	and	direct	information	are	coaligned	because	ݏ௜	and	

	of	principle	familiar	the	to	according	that,	means	It	otherwise.	positive	is	and	sign	same	the	of	are	௜ܪ

minimum	energy	from	physics,	direct	information	acts	to	(re)align	sentiment	along	its	direction	to	

reduce	the	energy.	The	overall	energy	due	to	the	impact	of	direct	information	flow	on	the	investors	

is	െߤ ∑ ௜ݏ௜ܪ
ே
௜ 	,	 obtained	 by	 summing	െܪ௜ݏ௜	for	 all	 investors	 and	 where	ߤ	is	 a	 positive	 coefficient	

determining	the	strength	of	the	impact.		

The	 second	 factor	 is	 the	 interaction	 among	 the	 individual	 investors	 (agents).	 When	 people	

exchange	opinions,	they	may	influence	the	opinions	of	others	and	in	turn	be	influenced	as	well.	So	

we	can	generally	say	 that	people	 tend	to	 “coalign”	 their	opinions.	 In	our	context,	where	 investors	

exchange	views	about	market	performance	(i.e.	sentiments),	we	can	write	the	energy	of	interaction	

between	 the	݅‐th	 and	݆‐th	 investors	 as	െܬ௜௝ݏ௜ݏ௝	,	 where	ܬ௜௝	is	 a	 positive	 coefficient	 determining	 the	
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strength	of	 interaction.	Energy	will	be	minimal	 (negative)	when	the	sentiments	are	coaligned	and	

maximal	 (positive)	 otherwise,	 which	 means	 that,	 in	 line	 with	 the	 principle	 of	 minimum	 energy,	

interaction	 tends	 to	 make	 investors	 co‐orient	 their	 views.	 The	 overall	 energy	 of	 interaction	

െ
ଵ

ଶ
∑ ௝ݏ௜ݏ௜௝ܬ
ே
௜ஷ௝ 	is	obtained	by	summing	െܬ௜௝ݏ௜ݏ௝	across	all	pairs	of	 investors	(݅ ് ݆)	and	multiplying	

the	sum	by	½	to	eliminate	double	counting.			

Consequently,	the	total	energy	of	the	system	takes	the	form:	

ܧ ൌ െ
1
2
෍ܬ௜௝ݏ௜ݏ௝

ே

௜ஷ௝

െ ௜ݏሻݐ௜ሺܪ෍ߤ

ே

௜

	.																																																																																																																									ሺ1ሻ	

Provided	 that	 the	 same	 information	 is	 available	 to	 all	 investors,	 it	 follows	 that	 the	 energy	 (1)	 is	

minimized	 if	 investors’	 sentiments	 are	 coaligned.	 We	 should	 therefore	 expect	 to	 find	 that	 all	

investors	 in	 the	model	share	 the	same	positive	or	negative	market	outlook.	Yet	we	know	that	 the	

reality	 is	 different:	 there	 will	 always	 be	 investors	 whose	 market	 sentiments	 are	 contrary	 to	 the	

popular	 opinion.	 This	 discrepancy	 arises	 for	 the	 reason	 that	 our	 model	 does	 not	 integrate	 the	

infinite	number	of	 different	 specific	 influences	 experienced	by	 investors	 that	 lead	 to	 randomness	

and	disorder	present	in	real	world.		

To	incorporate	the	effect	of	this	randomness	we	again	borrow	from	physics	where	temperature	

serves	as	a	measure	of	disorder	–	the	higher	the	temperature,	 the	more	stochastic‐like	a	system’s	

behavior.	 We	 apply	 this	 same	 methodology	 and	 introduce	 an	 economic	 analog	 to	 temperature,	

which	we	henceforth	simply	call	temperature	or	ߠ,	that	will	indicate	the	degree	of	disorder	in	our	

model.	This	means	that	each	investor	will	be	subject	to	random	disturbances	that	may	cause	her	to	

occasionally	 change	 sentiment	 irrespective	 of	 other	 investors	 in	 the	 model;	 in	 other	 words,	

investors’	sentiments	will	be	subject	to	random	fluctuations.	As	a	result,	the	study	of	system	(1)	now	

requires	statistical	methods	of	analysis	that	we	will	apply	in	the	next	section.		
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Let	 us	 briefly	 discuss	 the	 effects	 that	 such	microscopic	 random	 fluctuations	may	 have	 on	 the	

macroscopic	characteristics	of	 the	system.	At	 low	temperatures,	random	fluctuations	are	weak,	so	

that	 the	 interactions	 among	 investors	 lead	 the	 system	 toward	 one	 of	 two	 ordered	 macroscopic,	

polarized	states	where	the	total	sentiment	 is	either	positive	or	negative.	 In	 this	case,	according	to	

the	 model,	 investors’	 behavior	 is	 characterized	 by	 a	 high	 degree	 of	 herding	 that	 continues	 to	

increase	as	the	temperature	falls.	At	high	temperatures,	random	influences	prevail	and	the	system	

as	 a	whole	 appears	 disordered,	with	 total	 sentiment	 fluctuating	 around	 zero,	 i.e.	 investors	 fail	 to	

establish	 a	 consensus	 opinion	 and	 proceed	 to	 act	 randomly.	 In	 physics,	 the	 above‐described	

macroscopic	 states	 are	 called	 phases	 and	 when	 a	 system	 changes	 state	 it	 is	 known	 as	 phase	

transition.	

In	 reality	 it	 is	 probably	 seldom,	 if	 at	 all,	 that	 investors	 behave	 either	 randomly	 or	 in	 perfect	

synchronicity.	 	 It	would	 be	 reasonable	 to	 suppose	 that	 the	 actual	market	 is	mostly	 confined	 to	 a	

transitional	regime	between	disordered	and	ordered	phases,	where	random	behavior	and	herding	

or	crowd	behavior	can	be	of	roughly	equal	importance.	In	Section	1.3.2	we	will	provide	evidence	in	

support	of	this	conjecture.			

This	family	of	models,	originally	developed	to	describe	ferromagnetism	in	statistical	mechanics,	

is	 broadly	 called	 the	 Ising	model.	 The	 Ising	model	 has	 been	 applied	 to	many	 problems	 in	 social	

dynamics	over	 the	 last	30	years	 (see	Castellano,	Fortunato	and	Loreto	 (2009)).	 In	economics,	 the	

Ising	model	was	utilized	 for	 the	 first	 time	by	Vaga	 (1990),	who	adapted	 it	 to	 financial	markets	 to	

infer	 the	 existence	 of	 certain	 characteristic	market	 regimes.	 Since	 the	mid‐1990s	 there	 has	 been	

extensive	economic	research	 in	 this	area	and	the	related	 field	of	agent‐based	modeling	(see	Levy,	

Levy	and	Solomon	(2000),	Samanidou	et	al.	(2007),	Lux	(2009)	and	Sornette	(2014)).		

Our	application	of	the	Ising	model	differs	from	other	research	in	this	area	in	two	main	aspects:	

(i)	 in	 the	 empirical	 part	 of	 the	 paper	 (Section	 1),	 we	 use	 direct	 information	 flow,	 which	we	 can	
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measure,	 as	 an	 external	 force	 in	 the	 (homogeneous)	model	 and	 arrive	 at	 a	 closed‐form	 dynamic	

equation	that	governs	the	evolution	of	the	system’s	sentiment;	and	(ii)	in	the	theoretical	part	of	the	

paper	 (Section	 2),	we	develop	 a	 heterogeneous,	 two‐component	 extension	of	 the	 above	model	 to	

gain	insight	into	the	dynamics	of	the	interaction	between	sentiment	and	direct	information.		

1.2.2.	Equation	for	sentiment	evolution		

As	 noted	 earlier,	 system	 (1),	 in	 which	 investors’	 sentiments	 are	 subject	 to	 random	 fluctuation,	

necessitates	 statistical	methods	of	 analysis.	 In	 this	 section	we	 study	 the	evolution	of	 the	 system’s	

total	sentiment	as	a	statistical	average7:	ݏ ൌ ்ݏ	where	,ܰ/〈்ݏ〉 ൌ ∑ ௜ݏ
ே
௜ 	and	〈		〉	denotes	the	statistical	

average.	We	note	that	െ1 ൑ ݏ ൑ 1	because	〈்ݏ〉	can	vary	between	െܰ	and	൅ܰ.		

To	derive	 the	equation	 for	ݏሺݐሻ	in	analytic	 form,	we	make	 two	 simplifying	 assumptions:	 (i)	 all	

investors	receive	the	same	information	and	(ii)	each	investor	interacts	with	all	other	investors	with	

the	 same	 strength,	 which	 yields	 an	 all‐to‐all	 interaction	 pattern8.	 As	 a	 result,	 the	 system’s	 total	

energy	(1)	can	be	written	as	

ܧ ൌ െ
1
2
௝ݏ௜ݏ଴෍ܬ

ே

௜ஷ௝

െ ௜ݏሻ෍ݐሺܪߤ

ே

௜

,																																																																																																																											 ሺ2ሻ	

                                                            

7	Also	called	the	ensemble	average.	To	distinguish	between	the	statistical	or	ensemble	average,	on	the	one	

hand,	and	the	average	with	respect	to	time,	on	the	other	hand,	we	denote	the	former	using	angle	brackets	and	

the	latter	using	horizontal	bars.	

8	The	use	of	the	all‐to‐all	interaction	pattern	is	a	sensible	first	step	for	studying	this	problem	as	it	is	also	

the	 leading‐order	 approximation	 for	 a	 general	 interaction	 topology	 in	 the	 Ising	model.	We	will	 discuss	 the	

implications	of	this	approximation	in	Section	2.2.3.	
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where	ܪሺݐሻ	is	 the	 uniform	 information	 flow	 ௜ܪ) ൌ 	(ሻݐሺܪ and	ܬ଴	is	 the	 constant	 strength	 of	

interaction	(ܬ௜௞ ൌ 		.(଴ܬ

A	consideration	of	the	kinetics	of	system	(2)	leads	to	the	following	equation	for	ݏሺݐሻ	(Appendix	

A,	eq.	A16):9		

ሶݏ ൌ െݓ௦ݏ ൅ ௦ݓ tanh ቆ
ݏܬ ൅ ሻݐሺܪߤ

ߠ
ቇ	, 																																																																																																																						ሺ3ሻ	

where	 the	 dot	 denotes	 the	 derivative	 with	 respect	 to	 time,	ܬ ൌ 	is	଴ܬܰ the	 rescaled	 strength	 of	

interaction10,	ߠ	has	been	introduced	in	the	previous	section	as	the	economic	analog	to	temperature,	

i.e.	the	parameter	which	indicates	the	level	of	disorder	in	the	system,	and	wୱ ൌ 1/߬௦	with	߬௦	defined	

as	 the	 characteristic	 time	 over	which	 random	disturbances	will	make	 individual	 sentiment	ݏ௜	flip	

and	so	indicates	the	investor’s	average	memory	time‐span.			

Let	us	consider	equation	(3).	To	begin	with,	it	would	be	more	convenient	to	rewrite	it	as	

ሶݏ ൌ ,ݏሺܨ ሻݐ ൌ െݓ௦ݏ ൅ ௦ݓ tanh൫ߚଵݏ ൅ 	ሺ4ሻ																																																																																																		,	ሻ൯ݐሺܪଶߚ

where	ܨ	has	 the	meaning	 of	 the	 total	 force	 acting	 on	 the	 sentiment	,ݏ	ߚଵ ൌ 	is	ߠ/ܬ a	dimensionless	

parameter	which,	being	 inversely	proportional	 to	 temperature,	determines	 the	degree	of	order	 in	

the	system	and	ߚଶ ൌ 		.ߠ/ߤ
                                                            

9	Equation	(3)	is	obtained	in	this	paper	as	a	special	case	of	the	system	of	dynamic	equations	derived	in	the	

statistical	 limit	ܰ → ∞	for	 the	 all‐to‐all	 interaction	 pattern	 (see	 Appendix	 A)	 that	 we	 study	 in	 Section	 2.	

Equation	(3)	was	originally	obtained	by	Suzuki	and	Kubo	(1968),	who	used	the	mean‐field	approximation	to	

derive	it.	

10	Note	 that	ܬ଴ ∼ 1/ܰ	ensures	 that	 coupling	 energy	 is	 finite	 in	 the	 all‐to‐all	 interaction	 case,	 therefore	

ܬ ൌ ܱሺ1ሻ.		
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For	illustration	purposes	let	us	assume	that	tanhሺߚଶσுሻ ≪ 1,	where	σு	is	the	standard	deviation	

of	 the	 time	 series	ܪሺݐሻ.11	This	 assumption	 enables	 us	 to	 represent	ܨ	by	 a	 sum	 of	 the	 time‐

independent	and	time‐dependent	components,	which	takes	the	following	leading	order	form:		

,ݏሺܨ ሻݐ ൌ െݓ௦ሺݏ െ tanhሺߚଵݏሻሻ ൅ ሻݏଵߚ௦sechଶሺݓ tanh൫ߚଶܪሺݐሻ൯.																																																							

Equation	(4)	can	then	be	written	as	

ሷݏ݉ ൅ ሶݏ ൌ െ
ܷ݀଴ሺݏሻ

ݏ݀
൅ ሻݏଵߚ௦sechଶሺݓ tanh൫ߚଶܪሺݐሻ൯,																																																																																									ሺ5ሻ	

where	 the	coefficient	݉	is	 zero	 in	 accordance	with	 (4)	 (we	will	need	݉	for	 interpreting	 (5)	 in	 the	

next	 paragraph)	 and	 the	 time‐independent	 component	 of	ܨ	has	 been	 expressed	 via	 the	 function	

଴ܷሺݏሻ,	called	potential,	given	with	the	precision	up	to	a	constant	by	 			

଴ܷሺݏሻ ൌ ௦ݓ ൬
1
2
ଶݏ െ

1
ଵߚ
ln coshሺߚଵݏሻ൰.																																																																																																																					ሺ6ሻ	

And	 so,	we	 have	 arrived	 at	 the	 equation	 for	 an	 overdamped,	 forced	 nonlinear	 oscillator.	 The	

overdamping	means	that	 inertia	(݉ݏሷ)	 is	 small	and	can	be	neglected	relative	to	damping	(ݏሶ).	Thus	

equation	(5)	can	be	 interpreted	as	governing	 the	motion	of	a	 zero‐mass	(݉ ൌ 0)	damped	particle	

driven	 by	 the	 force	 applied,	 which	 is	 dependent	 on	ܪሺݐሻ,	 inside	 the	 potential	 well,	 the	 shape	 of	

which	 is	 determined	 by	 ଴ܷሺݏሻ.	 Accordingly,	ݏ	takes	 on	 the	 meaning	 of	 the	 particle’s	 coordinate.	

Therefore	the	motion	of	the	particle	will	trace	the	evolution	path	of	the	sentiment.				

In	other	words,	equation	(5)	describes	a	situation	where	the	time‐dependent	force	(information	

flow)	acts	to	displace	the	particle	(sentiment)	inside	the	potential	well	from	its	at‐rest	equilibrium	

                                                            

11	As	 we	 will	 see	 later,	ߚଶσு ൏ 1	(Table	 I),	 so	 that	 this	 assumption	 is	 within	 the	 relevant	 range	 of	

parameter	values.	
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(where	 the	 consensus	 of	 opinion	 is	 reached)	 while	 the	 restoring	 force	 (the	 interactions	 among	

investors	 subject	 to	 random	 influences)	 counteracts	 it	 by	 compelling	 sentiment	 back	 toward	

equilibrium.12		

The	expression	 for	 the	potential	ܷ଴ሺݏሻ	(eq.	6)	 reveals	 the	existence	of	disordered	and	ordered	

states	within	 the	 system	 as	 a	 function	 of	 temperature.13	The	potential	 is	 symmetric.	 It	 has	 the	U‐

shape	with	 one	 stable	 equilibrium	point	ݏ ൌ 0	for	ߚଵ ൏ 1	(the	 high	 temperature	 phase:	ߠ ൐ 	(ܬ and	

the	 W‐shape	 with	 one	 unstable	 ݏ) ൌ 0)	 and	 two	 stable	 ݏ) ൌ 	(േݏ equilibrium	 points	 that	 are	

symmetric	with	respect	to	the	origin	for	ߚଵ ൐ 1	(the	low	temperature	phase:	ߠ ൏ ‐U	The	.(2	Fig.)	(ܬ

shape	corresponds	to	the	disordered	state	since	sentiment	is	zero	at	equilibrium	reflecting	the	fact	

that	investors	tend	to	behave	randomly	in	this	phase.	The	W‐shape	corresponds	to	the	ordered	state	

where	sentiment	settles	at	either	the	negative	(ିݏ)	or	positive	(ݏା)	value	at	equilibrium,	as	herding	

behavior	prevails	in	this	phase.	Thus,	the	model	contains	the	phase	regimes	that	were	discussed	in	

Section	1.2.1.	

Figure	2	shows	that	 in	the	disordered	state	(ߚଵ ൏ 1)	decreasing	ߚଵ	causes	the	potential	well	to	

contract,	so	that	sentiment	becomes	entrenched	around	zero.	Similarly,	 in	the	ordered	state	(ߚଵ ൐

1)	when	ߚଵ	increases	 the	 negative	well	 ݏ) ൏ 0)	 and	 the	 positive	well	 ݏ) ൐ 0)	 quickly	 deepen	 and	

simultaneously	 shift	 toward	 the	 boundaries	 ݏ) ൌ േ1),	 so	 that	 sentiment	 becomes	 trapped	 at	 the	

                                                            

12	This	motion	 is	 finite	as	െ1 ൑ ݏ ൑ 1, ሶݏ ൌ ܨ ൏ 0	at	ݏ ൌ 1	and	ݏሶ ൌ ܨ ൐ 0	at	ݏ ൌ െ1.	However,	 the	 system	

does	not	permit	 free	oscillations	 around	 equilibrium:	 the	 absence	of	 inertia	makes	 the	particle	 fall	 directly	

toward	the	equilibrium	points,	which	are	the	stable	nodes	in	dynamical	systems	terminology.		

13	It	may	be	easier	to	understand	the	behavior	of	ܷ଴ሺݏሻ	if	it	is	expanded	into	a	truncated	Taylor	series	in	

the	powers	of	ݏ	as	ܷ଴ሺݏሻ ൌ െݓ௦ ቀ
ఉభିଵ

ଶ
ଶݏ െ ఉభ

య

ଵଶ
	that	Note	ଵ~1.ߚ	when	ݏ	any	for	well	reasonably	holds	which	ସቁ,ݏ

the	phase	transition	at	ߚଵ ൌ 1	corresponds	to	the	change	of	sign	of	the	quadratic	term.		
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stock	 market	 (perhaps	 best	 exemplified	 by	 the	 fact	 that	 the	 DJ	 Industrial	 Average	 Index	 has	

returned	on	average	around	7.5%	p.a.	over	the	last	100	years).		

According	to	our	model,	it	requires	a	positive	mean	of	ܪሺݐሻ	(ܪഥ ൐ 0)	to	keep	sentiment	positive	

on	 average,	 i.e.	 the	 volume	 of	 positive	 direct	 information	 must,	 in	 the	 long	 run,	 exceed	 that	 of	

negative	direct	information.	Indeed,	the	daily	mean	ܪഥ	measured	for	the	period	covered	by	our	data	

is	positive	(Table	I).	This	positive	information	bias	is	possibly	related	to	the	economic	growth	and	

inflation.		

The	asymmetry	of	sentiment’s	behavior	induced	by	ܪഥ ൐ 0	can	also	be	explained	in	terms	of	the	

perturbation	of	potential	well.	 If	we	decompose	H	 into	 two	parts	as	ܪሺݐሻ ൌ ഥܪ ൅ 	is	ഥܪ	where	ሻ,ݐᇱሺܪ

the	 constant	 mean	 of	ܪሺݐሻ	and	ܪᇱሺݐሻ	is	 its	 time‐dependent	 component,	 such	 that	ܪᇱሺݐሻതതതതതതത ൌ 0,	 then	

equations	(5)	and	(6)	can	be	written	as	

ሶݏ ൌ െ
݀ ௖ܷሺݏሻ
ݏ݀

൅ ݏଵߚ௦sechଶሺݓ ൅ ܿሻ tanhሺߚଶܪᇱሺݐሻሻ,																																																																																										ሺ7aሻ	

with	

௖ܷሺݏሻ ൌ ௦ݓ ൬
1
2
ଶݏ െ

1
ଵߚ
ln coshሺߚଵݏ ൅ ܿሻ൰,																																																																																																											ሺ7bሻ	

where	ܿ ൌ ഥܪଶߚ ൐ 0.	

Figure	4	shows	that	a	positive	c	breaks	 the	symmetry	of	 the	potential.	For	ߚଵ ൐ 1	the	positive	

well	(ݏ ൐ 0)	deepens	and	the	negative	well	(ݏ ൏ 0)	flattens,	so	that	the	probability	of	ݏ	crossing	into	
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Lastly,	we	would	like	to	mention	that	despite	similarities	in	the	behavior	between	sentiment	and	

the	 S&P	 500	 Index,	 the	 differences	 are	 nevertheless	 substantial.	 Perhaps	 most	 importantly,	 the	

evolution	of	sentiment	is	bounded	whereas	the	stock	market	is,	on	average,	experiencing	growth.	On	

the	 other	 hand,	 it	 seems	 reasonable	 to	 suppose	 that	 all	market	 developments,	 including	 its	 long‐

term	growth,	occur	through	developments	in	sentiment.	To	find	whether	or	not	this	is	true,	we	must	

understand	the	relation	between	 investor	sentiment	and	market	price,	which	 is	 the	subject	of	 the	

next	section.	

1.3.	Price	

In	this	section	we	will	be	concerned	with	investigating	how	sentiment	ݏ	can	impact	market	price	ܲ.	

We	propose	a	model	of	price	formation	and	apply	it	to	construct	an	empirical	time	series	of	model	

prices	that	we	will	compare	with	observed	market	prices.	

1.3.1.	Model	of	price	formation	

Positive	or	negative	sentiment	means	that	on	average	investors	believe	that	the	market	will	rise	or	

fall,	respectively.	But	does	it	also	imply	that	investors	would	necessarily	act	on	their	sentiment	and	

proceed	to	buy	or	sell	assets,	as	the	case	may	be?		

Let	us	consider	an	investor	who	has	just	allocated	capital	to	a	stock	market.	Next	day,	all	other	

things	being	equal,	the	investor	is	unlikely	to	increase	or	decrease	her	market	exposure	unless	her	

sentiment	has	changed	because	she	had	already	deployed	capital	in	the	amount	reflecting	that	same	

level	of	sentiment.	It	is	therefore	sensible	to	assume	that,	ignoring	external	constraints	(e.g.	capital,	

risk,	 diversification),	 investment	 decisions	 are	 mainly	 driven	 by	 the	 change	 in	 sentiment	 on	

timescales	where	 the	 investor’s	memory	of	past	 sentiment	 levels	persists,	 determined	by	∆ݐ ≪ ߬௦	

(see	Section	1.2.2).					



Page	26	of	97	

 

Reasoning	similarly,	we	conclude	that	on	longer	timescales	(∆ݐ ≫ ߬௦)	investors	would	invest	or	

divest	based	primarily	on	 the	 level	of	 sentiment	 itself	because	 their	previous	allocation	decisions	

would	no	longer	be	linked	in	their	memory	to	the	previous	levels	of	sentiment	(recall	that	our	initial	

guess	for	߬௦	is	approximately	1	month).		

As	the	change	of	market	price	is	determined	by	the	net	flow	of	capital	in	or	out	of	the	market,	we	

conclude	 that	price	 changes	would	depend	primarily	on	 sentiment	 changes	on	 timescales	 shorter	

than	߬௦	(i.e.	 probably	 days	 to	 weeks)	 and	 on	 sentiment	 itself	 on	 timescales	 longer	 than	߬௦	(i.e.	

probably	months	to	years),	that	is	

ሶ݌ ∼ .i			ሶ,ݏ e.		݌ ∼ ݐ∆		for																ݏ ≪ ߬௦	,																																																																																																															ሺ8aሻ	

ሶ݌ ∼ .i			,ݏ e.		݌ ∼ නݐ݀ݏ 							for		∆ݐ ≫ ߬௦	,																																																																																																														ሺ8bሻ	

where	݌	is	the	logarithm	of	price	ܲ,	i.e.	݌ ൌ ln ܲ.15																																						

We	 reiterate	 that	 equations	 (8a)	 and	 (8b)	 provide	 only	 the	 asymptotic	 relations	 between	

sentiment	and	price	at	respectively	short	and	 long	timescales.	As	we	do	not	know	the	 form	of	the	

actual	equation	governing	the	evolution	of	price,	we	simply	superpose	both	asymptotic	views	and	

seek	price	p	at	any	time	t	as		

ሶ݌ ൌ ܽଵݏሶ ൅ ܽଶݏ ൅ ܽଷ	,					or	equivalently		݌ሺݐሻ ൌ ܽଵݏ ൅ නሺܽଶݏ ൅ ܽଷሻ݀ݐ ൅ܽସ	,																																												ሺ9ሻ			

                                                            

15	By	taking	the	logarithm	of	ܲ,	we	normalize	the	price	so	that	ݏ	or	݀ݏ	results	in	the	relative	price	change	

݌݀ ൌ ݀ሺln ܲሻ ൌ ௗ௉

௉
	,	i.e.	the	return,	which	is	a	standard	procedure.	If	the	price	had	not	been	normalized,	ݏ	or	݀ݏ	

would	have	caused	different	percentage	changes	in	the	price	depending	at	which	price	level	it	occurs.		
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in	 the	 hope	 that	 solutions	 given	 by	 it	 approximate	 true	 solutions	 reasonably	 well.	 Note	 that	

constants	ܽଵ	and	ܽଶ	are	positive,	whereas	constants	ܽଷ	and	ܽସ	can	take	any	sign.		

Equation	(9)	can	be	written	as	

ሶ݌ ൌ ܽଵݏሶ ൅ ܽଶሺݏ െ 	ሺ10ሻ																																																																																																																																																ሻ,∗ݏ

where	ݏ∗ ൌ െ
௔య	
௔మ
.		

Equation	 (10)	 implies	 that	 the	 change	 in	 price	 at	∆t ≫ τୱ	is	 proportional	 to	 the	 deviation	 of	

sentiment	from	a	certain	value	given	by	s∗.	Thus	s∗	in	(10)	serves	as	a	yardstick,	averaged	across	the	

investment	 community,	 relative	 to	 which	 investors	 appraise	 sentiment:	 if	 sentiment	 is	 above	 or	

below	 it,	 they	 may	 invest	 or	 divest,	 respectively.	 A	 nonzero	s∗	can	 be	 interpreted	 as	 an	 implied	

reference	sentiment	level	that	investors	are	accustomed	to	and	consider	normal.16	We	do	not	wish	

to	 impose	 any	 a	 priori	 constraints	 on	s∗.	 Instead	 we	 will	 determine	 its	 value	 by	 fitting	 price	

observations	to	the	model	in	the	next	section.		

1.3.2.	Modeled	price	

In	 this	 section	we	apply	equation	(10)	 to	construct	 the	model	price	݌ሺݐሻ	from	the	 time	series	ݏሺݐሻ	

reported	in	Figure	3.		

We	 search	 for	 the	 coefficients	 in	 equation	 (10)	 that	 minimize	 the	 mean‐square	 deviation	

between	݌ሺݐሻ	and	the	log	prices	of	the	S&P	500	Index	over	the	period	covered	by	our	data.	Figure	

5a,	which	depicts	the	evolution	of	model	prices	vs.	index	prices,	shows	that	݌ሺݐሻ	approximated	the	

index	behavior	over	this	period	well.	We	note,	first,	that	the	daily	model	prices	and	the	daily	index	

                                                            

16	A	nonzero	ݏ∗	would	be	compatible	with	the	adaptation	level	theory	put	forward	by	Helson	(1964)	and	

the	reference	point	concept	introduced	by	Kahnemann	and	Tversky	(1979)	in	their	prospect	theory.		
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temperature	17.ߠ	This	 means	 that	 temperature	 has	 a	 direct	 impact	 on	 price	 dynamics.	 As	

temperature	indicates	the	balance	between	random	behavior	and	herding	behavior	in	the	market,	it	

would	be	sensible	to	presume	that	such	balance	may	gradually	shift	over	time	and	consider	ߠ	to	be	

slowly	 varying	 with	 time.	 Consequently,	 we	 can	 expect	 the	 reference	 sentiment	 level	ݏ∗	to	 be	 a	

slowly	varying	function	of	time	as	well.	

Assuming	that	ߠ ൌ 	process	iterative	an	using	(10)	and	(4)	equations	from	ሻݐሺ݌	calculate	we	ሻݐሺߠ

for	minimizing	the	mean‐square	deviation	between	the	model	and	the	index	for	ߚଵ ൌ 	and	ሻ൯ݐሺߠଵ൫ߚ

∗ݏ ൌ 	between	fit	better	a	obtain	we	result,	a	As	constant.18	parameters	other	keeping	while	ሻ൯,ݐሺߠ൫∗ݏ

the	model	and	the	 index:	now	݌ሺݐሻ	matches	the	 index	behavior	at	various	timescales	more	closely	

(Fig.	6)	and	the	correlation	between	the	daily	model	prices	and	the	daily	index	values	has	improved	

to	97%.			

                                                            

17	The	 equilibrium	 points	 are	 determined	 by	 the	 condition	 that	ܪ ൌ 0	and	ݏሶ ൌ 0	in	 equation	 (4)	 (or	

equivalently	 by	 the	 extrema	 of	ܷ଴ሺݏሻ	(eq.	 6)),	 given	 by	 the	 equation	ݏ ൌ tanhሺߚଵݏሻ,	 so	 that	 the	 equilibrium	

value	depends	only	on	ߚଵሺߠሻ.	

18	As	 follows	 from	 equation	 (10),	 the	 reference	 sentiment	 level	ݏ∗	is	 an	 important	 factor	 for	 price	

dynamics.	 In	 the	 leading	 order	ݏ∗	is	 exclusively	 a	 function	 of	ߚଵሺߠሻ:	ݏ∗ ൌ 	(Appendix	ሻ൯ߠଵሺߚ൫∗ݏ B).	 As	we	 are	

interested	in	the	effect	of	a	slowly	varying	ߠሺݐሻ	on	ݏ∗,	we	consider	ߚଵ	to	be	a	function	of	time	but	for	simplicity	

hold	other	parameters	constant.		
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of	temperature	ߠ,	can	gradually	change	over	time.	As	we	will	see	in	Section	2,	ߠ	plays	an	important	

role	in	influencing	market	dynamics.20	

For	convenience,	the	estimates	of	parameters	are	reported	in	the	table	below.		

Table	I		
Parameters	applied	for	modeling	࢙ሺ࢚ሻ	and	࢖ሺ࢚ሻ	
	

Parameter	 Value	 Source	

	ഥܪ 0.017	 DJ/Factiva	(Section	1.1)	
σு	 0.408 DJ/Factiva	(Section	1.1)	
߬௦	 25	(business	days) Initial	guess	(Section	1.2.3)	
௦ݓ ൌ 1/߬௦	 0.040	 	
	ଵߚ 1.100 Average	ߚଵ(Fig.	7)	

	ଶߚ 1.000 Initial	guess	(Section	1.2.3)	

ܽଵ	 0.374 Least	squares	fitting	Eq.	10	

ܽଶ	 0.002 Least	squares	fitting	Eq.	10	

ܽସ	 6.500 Least	squares	fitting	Eq.	10	

	∗ݏ 0.131	 Least	squares	fitting	Eq.	10	

ܿ ൌ 	ഥܪଶߚ 0.017	 	

	

	

                                                            

20	A	comment	relevant	to	the	following	sections:	We	apply	non‐constant	ߚଵ ൌ ∗ݏ	and	ሻ൯ݐሺߠଵ൫ߚ ൌ 	ሻ൯ݐሺߠ൫∗ݏ

for	 two	 purposes,	 to	 analyze	 the	 variation	 of	 	with	ߠ	 time	 and	 to	 demonstrate	 that	 by	 accounting	 for	 this	

variation	we	achieve	a	closer	fit	between	the	model	and	the	market.	Since	the	variation	of	ߠ	is	small	and	for	

the	 sake	 of	 simplicity,	 we	 will	 henceforth	 use	 the	 time	 series	ݏሺݐሻ	and	݌ሺݐሻ	as	 calculated	 with	 constant	

parameters.	 The	 values	 of	 parameters	 are	 shown	 in	 Figures	 3	 and	 5,	 except	 that	 we	 apply	ߚଵ ൌ 1.1	(the	

average	value	of	ߚଵሺݐሻ	over	the	studied	period)	instead	of	ߚଵ ൌ 1.0.	The	parameter	values	are	also	summarized	

in	 Table	 I,	 however	 the	 graphs	ݏሺݐሻ	and	݌ሺݐሻ	are	 not	 shown	 for	 the	 economy	 of	 space	 and	 due	 to	 their	

similarity	to	those	depicted	in	Figures	3	and	5,	respectively.	
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1.4.	Discussion	

In	 this	 section	 we	 summarize	 the	 findings	 of	 the	 empirical	 study	 and	 discuss	 their	 theoretical	

implications	and	practical	applications.	

1.4.1.	Results		

We	have	 shown	 that	 the	model	price	 replicated	 the	 S&P	500	 Index	 values	over	 the	period	1996‐

2012	within	reasonable	 tolerance,	 lending	credence	to	 the	assumptions	made	early	on	to	develop	

the	model.	Thus	we	conclude:	

First,	investors’	sentiment	is	influenced	by	direct	information	flow.		

Second,	in	addition	to	direct	information,	sentiment	is	also	influenced	by	the	interaction	among	

investors	 and	 idiosyncratic	 influences	 that	 can	 be	 assumed	 random	 for	 our	 purposes.	 The	 Ising	

model,	 in	 which	 temperature	 serves	 as	 a	 measure	 of	 random	 influences,	 provides	 the	 relevant	

framework	for	studying	sentiment	dynamics	and,	 in	particular,	enables	us	to	obtain	a	closed‐form	

equation	for	the	evolution	of	sentiment.		

Third,	 the	 mechanism	 of	 price	 formation	 as	 a	 function	 of	 sentiment	 works	 differently	 on	

different	 timescales.	 On	 timescales	 shorter	 than	 the	 investors’	 average	 memory	 horizon,	 market	

price	 changes	 proportionally	 to	 the	 change	 in	 sentiment.	 On	 longer	 timescales,	 price	 changes	

proportionally	to	 the	deviation	of	sentiment	from	a	reference	 level	 that	 is	generally	nonzero.	As	a	

result,	price	development	is	naturally	decomposed	into	a	slow,	large‐scale	variation	with	time	and	

fast,	small‐to‐mid‐scale	fluctuations.	

We	 have	 seen	 that	 for	 the	 studied	 period	 the	 effects	 in	 connection	with	 herding	 behavior	 of	

investors	 were	 more	 prevalent	 than	 those	 related	 to	 random	 behavior.	 Consequently,	 sentiment	

evolved	 inside	a	W‐shaped	potential,	with	a	negative	equilibrium	value	 in	one	well	and	a	positive	

value	 in	 the	 other.	 Direct	 information	 flow,	which	 acts	 as	 a	 force	moving	 sentiment	 inside	 these	
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wells,	 was	 on	 average	 positive	 during	 the	 studied	 period.	 Two	 results	 became	 evident:	 first,	

sentiment	spent	most	of	the	time	in	the	positive	well	and	crossed	into	the	negative	well	only	during	

the	 time	 of	 crises	 and,	 second,	 the	 reference	 sentiment	 level	 stayed	 mostly	 positive	 during	 this	

period.	

Although	our	data	 coverage	 is	 limited	 to	 16	years,	we	 tend	 to	 think	 that	 the	 above‐described	

asymmetry	 of	 sentiment	 dynamics,	 caused	 by	 the	 positive	 bias	 in	 direct	 information	 flow,	 may	

generally	persist.	This	 is	because	direct	 information	must	be	on	average	positive	 to	be	consistent	

with	 the	 long‐term	 growth	 of	 the	 stock	 market.	 The	 asymmetric	 behavior	 of	 sentiment	 can	 be	

alternatively	explained	 in	 terms	of	 the	perturbation	of	potential:	 the	 constant	proportional	 to	 the	

(positive)	 mean	 of	 direct	 information	 flow	 is	 a	 parameter	 that	 distorts	 the	 shape	 of	 potential,	

making	the	positive	well	deeper	than	the	negative	well.	As	a	result,	sentiment	has	a	propensity	to	be	

on	average	positive	as	it	takes	more	significant	news	to	turn	it	from	positive	to	negative	than	from	

negative	to	positive.					

We	would	like	now	to	comment	on	certain	effects	pertaining	to	the	long‐term	(months	to	years)	

behavior	 of	 sentiment	 and	 price.	 We	 begin	 with	 the	 economic	 analog	 of	 temperature,	 which	

determines	 the	 relative	 importance	 of	 random	 behavior	 vs.	 herding	 behavior.	 Temperature	 can	

substantially	impact	market	dynamics	in	two	ways:	first,	by	altering	the	shape	of	potential	thereby	

affecting	sentiment	evolution	(e.g.	the	probability	of	crossing	the	wells)	and,	second,	by	influencing	

the	reference	sentiment	level	(eq.	10)	which	is	sensitive	to	temperature	changes.		

We	have	observed	that	temperature	and	the	volatility	of	sentiment	varied	over	time	in	a	similar	

pattern.	 It	seems	reasonable	to	assume	that	periods	of	 increased	sentiment	volatility	imply	a	high	
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consistent	with	the	results	produced	by	the	extended,	self‐contained	model	we	develop	in	the	next	

section.	

2.	Part	II	–	Theoretical	study	of	stock	market	dynamics	

In	 the	 empirical	 study	 we	 have	 assumed	 that	 information	 that	 speculates	 about	 future	 market	

returns	 (direct	 information)	may	be	 effective	 in	 influencing	 investors’	 opinions	 about	 the	market	

(investors’	 sentiment).	 We	 have	 established	 a	 mechanism	 that	 translates	 direct	 information	 via	

investors’	sentiment	into	market	price.	The	translation	mechanism	itself	is	mathematically	simple	in	

the	 sense	 that	 the	 equation	 for	 sentiment	 dynamics	 (eq.	 4),	 which	 defines	 how	 investors	 form	

opinions	 based	 on	 received	 information,	 and	 the	 equation	 for	 price	 formation	 (eq.	 10),	 which	

defines	how	investors	make	investment	decisions	based	on	their	opinions,	constitute	an	uncoupled	

and	integrable	system	of	equations.		

It	 is	 therefore	 not	 surprising	 that	 the	 source	 of	 complex	 behavior,	 characteristic	 to	 actual	

markets,	 in	 the	 model	 is	 contained	 within	 the	 direct	 information	 flow	 that	 we	 have	 treated	 as	

exogenous.	This	means	 that	we	have	 investigated	 just	one	part	of	 the	problem	and	 to	 learn	more	

about	 the	 origins	 of	market	 behavior	we	 have	 to	 extend	 the	 framework	 by	 incorporating	 into	 it	

assumptions	on	how	direct	information	flow	is	generated	and	channeled	in	the	market.		

In	this	part	of	the	study	we	develop	a	theoretical	(self‐contained)	model	of	the	stock	market	that	

includes	 direct	 information	ܪ	(which	 we	 will	 call	݄	to	 set	 it	 apart	 from	 the	 empirical	 case)	 as	 a	

variable,	alongside	sentiment	ݏ	and	price	݌.	This	model	is	simplified	by	construction	to	facilitate	its	

study,	 so	 its	 solutions	 cannot	 reproduce	 the	 full	 range	 and	 the	 precise	 detail	 of	 actual	 market	

regimes.	 Its	purpose	 is	 to	 capture	 the	essential	 elements	of	market	behavior	 and	explain	 them	 in	

terms	of	the	interaction	among	direct	information,	investor	sentiment	and	market	price.		
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This	 part	 proceeds	 as	 follows:	 Section	 2.1	 develops	 a	 self‐contained	 model	 of	 stock	 market	

dynamics	 and	 Section	 2.2	 provides	 the	 analysis,	 results	 and	 discussion.	 The	 relevant	 technical	

details	are	in	Appendices	A	and	C.		

2.1.	News‐driven	market	model	

Direct	information,	which	is	based	on	the	interpretation	of	general	news,	consists	of	opinions	about	

future	market	 performance	 that	 can	 reach	 a	 large	 number	 of	 investors	 in	 a	 short	 period	 of	 time.	

Such	 opinions	 can	 come	 from	 financial	 analysts,	 economists,	 investment	 professionals,	 market	

commentators,	business	news	columnists,	financial	bloggers	–	basically,	anyone	with	a	view	about	

the	market,	the	means	to	deliver	it	to	a	large	investor	audience	and	the	credibility	to	instill	trust.	For	

convenience,	let	us	refer	to	them	collectively	as	market	analysts.	In	the	context	of	our	framework,	

analysts	perform	a	vital	function:	they	interpret	news	from	various	sources,	opine	how	the	market	

might	 react	 and	 transmit	 their	 views	 through	 mass	 media.	 That	 is,	 they	 convert	 any	 type	 of	

information	into	direct	information	and	make	it	available	to	market	participants.22		

                                                            

22	We	 consider	 only	 publicly	 available	 direct	 information	 simply	 because	we	 know	 how	 to	measure	 it.	

Usually,	prior	to	an	expert	opinion	being	expressed	publicly,	it	is	discussed	in	professional	circles	and	diffuses	

across	the	investment	community.	Thus,	it	would	be	normal	that	privately	expressed	views	would	have	a	lead	

over	 those	 which	 are	 publicly	 expressed.	We	 tend	 to	 think,	 however,	 that	 on	 the	 timescale	 of	 investment	

decision‐making	 by	 institutional	 investors,	 this	 informational	 lag	 is	 negligible	 due	 to	 the	 speed	with	which	

information	 becomes	public	 through	 online	 publication,	 email	 and	blogs.	 The	 topic	 of	 how	opinions	 transit	

from	private	to	public	is	deserving	of	its	own	research,	but	is	outside	the	scope	of	this	work.	Here	we	assume	

that,	for	our	purposes,	the	time	lag	between	the	public	and	private	direct	information	can	be	neglected	while	

their	magnitudes	(as	measured	by	ܪ)	can	be	considered	proportional.	
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Let	us	construct	an	Ising‐type	model	with	two	types	of	 interacting	agents:	 investors	who	have	

capital	 to	 invest	but	 cannot	 interpret	news	and	analysts	who	can	 interpret	news	but	do	not	have	

capital	to	invest	(the	irony	of	which	is	not	lost	on	us).	At	any	point	in	time,	each	investor	and	each	

analyst	has	either	a	positive	(+1)	or	negative	(‐1)	opinion	about	 future	market	performance	–	the	

binary	market	sentiment	ݏ௜	in	the	case	of	investors	and	the	binary	market	sentiment	 ௝݄	in	the	case	of	

analysts.	 Investors	 can	 interact	 with	 each	 other	 and	 with	 analysts	 and,	 similarly,	 analysts	 can	

interact	with	each	other	as	well	as	with	 investors.	They	 interact	by	 literally	 imposing	opinions	on	

each	 other	 as	 every	 sentiment	 tries	 to	 align	 other	 sentiments	 along	 its	 directional	 view.	 It	 is	

important	to	note	that	although	the	nature	of	interaction	is	the	same	(the	exchange	of	opinions),	the	

means	of	interaction	in	the	model	are	very	different:	analysts,	who	are	outnumbered	by	investors,	

are	assumed	to	exert	a	disproportionally	strong	force	on	investors	due	to	access	to	mass	media.					

We	can	now	replace	the	homogeneous,	single‐component	Ising	system	(1),	where	the	external	

flow	of	direct	 information	 acted	 on	 investors,	 by	 its	 heterogeneous,	 two‐component	 extension,	 in	

which	investors	and	analysts	(instead	of	information	flow)	interact	with	each	other.	We	define	ሼݏ௜ሽ	

and	൛ ௝݄ൟ	as	 individual	 sentiments	 of	 investors	 and	 analysts,	 respectively,	 and	 ௦ܰ ,	 ௛ܰ 	as	 their	

numbers	( ௦ܰ ≫ ௛ܰ ≫ 1)	and,	as	before,	write	the	system’s	total	energy	(Appendix	A,	eq.	(A1))	and	

apply	the	all‐to‐all	interaction	pattern	to	obtain	in	the	limit	 ௦ܰ → ∞,	 ௛ܰ → ∞	the	dynamic	equations	

that	 describe	 the	 evolution	 of	 the	 variables	 as	 statistical	 averages,	 namely:	ݏ ൌ /〈்ݏ〉 ௦ܰ	where	

்ݏ ൌ ∑ ௜ݏ
ேೞ
௜ୀଵ 	and	݄ ൌ 〈்݄〉/ ௛ܰ	where	்݄ ൌ ∑ ௝݄

ே೓
௝ୀଵ .				

The	general	form	of	the	dynamic	equations	is	as	follows	(Appendix	A,	eq.	A14):	

ሶݏ ൌ െݓ௦ݏ ൅ ௦tanhݓ ቆ
ݏଵଵܬ ൅ ଵଶ݄ܬ ൅ ሻݐ௦ܾ௦ሺߤ

ߠ
ቇ	,																																																																																															ሺ11ܽሻ	

ሶ݄ ൌ െݓ௛݄ ൅ ௛ݓ tanh ቆ
ݏଶଵܬ ൅ ଶଶ݄ܬ ൅ ሻݐ௛ܾ௛ሺߤ

ߠ
ቇ	,																																																																																											ሺ11ܾሻ	
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where,	analogous	 to	equation	 (3),	 the	coefficient	ܬଵଵ	defines	 the	strength	of	 interaction	among	the	

investors;	ܬଵଶ	–	 the	 strength	with	which	 the	 analysts	 act	 on	 the	 investors;	ܬଶଵ	–	 the	 strength	with	

which	 the	 investors	act	on	the	analysts;	ܬଶଶ	–	 the	strength	of	 interaction	among	the	analysts;	ܾ௦ሺݐሻ	

and	ܾ௛ሺݐሻ	are	any	general	external	forces,	so	far	undefined,	acting	respectively	on	the	investors	and	

the	 analysts,	 where	ߤ௦	and	ߤ௛	determine	 their	 impacts;	ݓ௦ ൌ 1/߬௦	with	߬௦	being	 the	 characteristic	

horizon	 of	 the	 investors’	 memory	 and	ݓ௛ ൌ 1/߬௛	with	߬௛	being	 the	 characteristic	 horizon	 of	 the	

analysts’	 memory;	 and	ߠ	has	 been	 identified	 in	 equation	 (3)	 to	 be	 the	 economic	 analog	 of	

temperature	or	the	parameter	that	determines	the	 impact	of	random	influences	and	consequently	

the	level	of	disorder	in	the	system.	Note	that	parameters	ܬଵଵ,	ܬଵଶ,	ܬଶଵ,	ܬଶଶ,	ߤ௦,	ߤ௛,	ݓ௦,	ݓ௛	and	ߠ	are	non‐

negative	constants.	

In	our	 framework,	 analysts	must	 react	 to	new	 information	 faster	 than	 investors,	 so	 that	 their	

resistance	to	a	change	in	sentiment	is	weaker	than	that	of	 investors.	Accordingly,	we	assume	߬௛	to	

be	 an	 order	 of	 magnitude	 smaller	 than	߬௦,	 resulting	 in	߬௛ ൎ 2.5	business	 days,	 This	 value	 is	

consistent	with	 the	behavior	of	 the	autocorrelation	of	ܪሺݐሻ	(Fig.	11a)	 that	 shows	a	 rapid	decay	of	

“memory”	effects	on	the	order	of	1‐3	business	days.	Hence	we	set	ݓ௛ ൌ 0.4.	

Let	us	consider	the	external	forces	ܾ௦ሺݐሻ	and	ܾ௛ሺݐሻ,	which	have	the	meaning	of	external	sources	

of	 information	 tapped	 by	 investors	 and	 analysts,	 respectively.	 We	 set	ܾ௦ ൌ 0	by	 assuming	 that	

investors	in	the	model	receive	direct	information	only	through	analysts;	in	other	words,	investors’	

sentiment	ݏ	may	change	only	by	interacting	with	analysts’	sentiment	݄.		

The	case	of	ܾ௛	is	more	interesting	because	of	the	analysts’	function	to	translate	news	into	direct	

information	and	so	provide	a	channel	through	which	exogenous	information	enters	the	model.	Since	

any	news	may	be	of	relevance	in	this	context	–	e.g.	economic	data	release,	corporate	news,	central	

bank	announcements,	political	events	or,	say,	change	of	weather	conditions	–	we	can	make	the	usual	

assumption	 that	 new	 information	 arrives	 randomly	 and	 therefore	 represent	 news	 flow	via	 noise.	
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There	is,	however,	a	particular	source	of	information	that	should	be	considered	separately.	It	is	the	

change	of	market	price	itself.23	Its	importance	is	supported	by	empirical	evidence:	today’s	values	of	

	are	ሻݐሺܪ correlated	 with	 yesterday’s	 and	 today’s	 S&P	 500	 log	 returns	 at	 over	 30%	 and	 50%,	

respectively.24		

Thus,	we	divide	 information	available	 to	analysts	 in	 the	model	 into	 information	related	to	the	

change	in	market	price	and	all	other	(external)	information.	We	write	ܾ௛ ൌ ρଵ݌ሶ ൅ ρଶߦሺݐሻ,	where	݌ሶ 	is	

market	 price	 change	 (eq.	 	is	ሻݐሺߦ	,(10 random	news	 flow	 (noise)	 and	ρଵ	(ρଵ ൒ 0ሻ	along	with	ρଶ	are	

scaling	 constants.	 Note	 that	 by	 writing	݌ሶ 	in	 the	 expression	 for	ܾ௛,	 we	 have	 assumed	 that	 the	

feedback	in	the	form	of	price	change	is	continuous	and	contemporaneous,	which	is	consistent	with	

the	fact	that	prices	can	be	observed	–	directly	as	data	–	at	any	time	and	in	real‐time.		

                                                            

23	Feedback	in	connection	with	price	observations	has	been	implemented	in	several	agent‐based	models.	

For	example,	Caldarelli,	Marsili	and	Zhang	(1997)	used	the	rate	of	change	in	price	along	with	its	higher‐order	

derivatives,	 Bouchaud	 and	 Cont	 (1998)	 applied	 price	 deviations	 from	 fundamental	 values,	 and	 Lux	 and	

Marchesi	 (1999,	 2000)	 considered	 both	 the	 rate	 of	 change	 in	price	 and	price	deviations	 from	 fundamental	

values.	 The	 idea	 that	 price	 observations	 create	 a	 feedback	 loop	which	 can	 produce	 complicated	 dynamics,	

leading	 to	market	 rallies	 and	 crashes,	 has	 roots	 in	 the	 19th	 century	 (see	 a	 review	 by	 Shiller	 (2003)).	With	

regard	 to	 early	 feedback	models,	we	 take	particular	note	of	 Shiller’s	 (1990)	model	with	 lagged,	 cumulative	

feedback	operating	over	long	time	intervals,	implying	that	information	related	to	past	price	changes	has	long‐

lasting	effects.	

24	Interestingly,	 the	 cross‐correlation	 function	 is	 approximately	 zero	 at	 positive	 time	 lags.	 We	 could	

plausibly	explain	this	by	stating	that	on	short	timescales	(e.g.	intraday)	there	is	an	efficient	market	response	to	

news,	 whereby	 new	 information	 is	 almost	 immediately	 reflected	 in	 prices	 as	 obvious	 price	 anomalies	 are	

swiftly	 arbitraged	 away	 by	 investors	 (e.g.	 the	 high	 frequency	 traders).	 The	 response	 to	 news	 on	 longer	

timescales	has	a	different	nature,	and	its	mechanics	are	the	subject	of	the	present	work.		
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We	can	now	substitute	the	external	forces	ܾ௦ ൌ 0	and	ܾ௛ ൌ ρଵ݌ሶ ൅ ρଶߦሺݐሻ	into	equations	(11)	and	

write	the	model	in	terms	of	݌, 		:follows	as	݄	and	ݏ

ሶ݌ ൌ ܽଵݏሶ ൅ ܽଶሺݏ െ 	ሺ12ܽሻ																																																																																																																																													ሻ,∗ݏ

ሶݏ ൌ െݓ௦ݏ ൅ ݏଵߚ௦tanhሺݓ ൅ 	ሺ12ܾሻ																																																																																																																								ଶ݄ሻ,ߚ

ሶ݄ ൌ െݓ௛݄ ൅ ௛ݓ tanh൫ߚଷݏ ൅ ସ݄ߚ ൅ ሶ݌ଵߢ ൅ 	ሺ12ܿሻ																																																																																							ሻ൯,ݐሺߦଶߢ

where	for	convenience	we	have	regrouped	the	constants	to	have	ߚଵ ൌ
௃భభ
ణ
ଶߚ	, ൌ

௃భమ
ణ
ଷߚ	, ൌ

௃మభ
ణ
ସߚ	, ൌ

௃మమ
ణ
,	

ଵߢ ൌ
ఓ೓஡భ
ణ
	and	ߢଶ ൌ

ఓ೓஡మ
ణ
.		

We	wish	to	make	the	initial	investigation	easier	by	further	simplifying	equation	(12c).	First,	let	

us	assume	that	the	influence	of	investors	on	analysts	(~ߚଷ)	and	the	interactions	among	the	analysts	

	performance	market	to	due	impact	the	than	making	opinion	of	respect	in	important	less	are	(ସߚ~)

	.(12c)	in	terms	corresponding	the	neglect	we	therefore	and	,(ଶߢ~)	flow	news	exogenous	and	(ଵߢ~)

Second,	let	us	approximate	݌ሶ 	in	(12c)	as	݌ሶ ൌ ܽଵݏሶ ൅ 	the	carries	that	constant	positive	a	is	ݎ	where	,ݎ

meaning	of	the	long‐term	growth	rate	of	the	stock	market.	That	is,	we	replace	ܽଶሺݏ െ 	when	ݎ	by	ሻ∗ݏ

we	substitute	݌ሶ 	from	(12a)	 into	(12c).	As	we	have	seen	 in	Section	1.3.2,	ܽଶሺݏ െ 	slowly	changes	ሻ∗ݏ

with	 time	 as	 compared	 with	ܽଵݏሶ,	 therefore	 the	 approximation	 is	 valid	 for	 sufficiently	 short	 time	

intervals.	In	other	words,	by	making	this	approximation	we	neglect	the	long‐term	feedback	effects	

on	݄	relative	to	the	analogous	short‐term	effects.	

As	a	result,	system	(12)	can	be	simplified	as	

ሶ݌ ൌ ܽଵݏሶ ൅ ܽଶሺݏ െ 	ሺ13ܽሻ																																																																																																																																													ሻ,∗ݏ

ሶݏ ൌ െݓ௦ݏ ൅ ݏଵߚ௦tanhሺݓ ൅ 	ሺ13ܾሻ																																																																																																																									ଶ݄ሻ,ߚ

ሶ݄ ൌ െݓ௛݄ ൅ ௛ݓ tanh൫ݏߛሶ ൅ ߜ ൅ 	ሺ13ܿሻ																																																																																																												ሻ൯,ݐሺߦߢ
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2.2.	Model	analysis	and	results	

In	this	section	we	report	and	discuss	the	results	of	the	study	of	system	(13).	We	note	that	equations	

(13b,c)	constitute	a	closed	system	that	we	can	solve	 for	݄ሺݐሻ	and	ݏሺݐሻ	and	subsequently	substitute	

	into	ሻݐሺݏ equation	 (13a)	 to	 obtain	݌ሺݐሻ.	We	 first	 consider	 the	 autonomous	 case	ߦሺݐሻ ൌ 0	and	 then	

study	the	time‐dependent	situation	ߦሺݐሻ ് 0.	

2.2.1.	Autonomous	case:	૆ሺܜሻ ൌ ૙	

The	 two‐dimensional	nonlinear	dynamical	 system	(13b,c)	 is	 studied	 in	detail	 in	Appendix	C.	Here	

we	report	only	the	main	results	for	the	relevant	range	of	parameter	values.		

At	ߚଵ ൌ 1	system	 (13b,c)	 experiences	phase	 transition	 between	 the	 disordered	 state	with	 one	

equilibrium	point	(ߚଵ ൏ 1)	and	the	ordered	state	with	three	equilibrium	points	(ߚଵ ൐ 1).	As	before,	

we	are	interested	in	the	ordered	state	in	the	vicinity	of	the	phase	transition	(ߚଵ ≳ 1).		

If	ߜ ൌ 0,	there	is	one	unstable	equilibrium	point	at	the	origin	and	two	stable	equilibrium	points	

at	ݏ ൌ ݄	axis	the	on	origin	the	to	respect	with	symmetrically	located	േݏ ൌ 0.	If	ߜ ൐ 0,	the	equilibrium	

points	 shift	 to	new,	 asymmetric	positions	along	 the	axis	݄ ൎ ߜ	for	ߜ ≪ 1.	Once	ߜ	exceeds	a	 critical	

value	the	distortion	of	the	initially	symmetric	configuration	becomes	so	strong	that	only	the	positive	

equilibrium	point	at	ݏ ൌ 		.survives	ାݏ

In	this	respect	the	behavior	of	system	(13b,c)	is	similar	to	that	of	the	one‐component	sentiment	

model	(4).	To	understand	where	a	new	behavior	may	originate,	let	us	take	a	closer	look	at	equations	

(13b,c).	Direct	information	flow,	described	by	analysts’	sentiment	݄,	causes	investors’	sentiment	ݏ	to	

change	(eq.	13b).	In	turn,	any	change	in	ݏ	also	forces	a	change	in	݄	as	due	to	the	feedback	term	ݏߛሶ	

(eq.	13c).	As	a	result,	investors’	sentiment	is	now	coupled	to	direct	information	and	vice	versa,	and	it	

is	this	coupling	that	leads	to	the	emergence	of	inertia	and	new	behaviors	related	to	it.	

Indeed,	as	is	shown	in	Appendix	C,	system	(13b,c)	can	be	approximated	by	
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focus	in	the	negative	well	(red	asterisk),	a	stable	focus	in	the	positive	well	(green	asterisk)	and	the	

trajectories	 passing	 near	 the	 saddle	 point	 located	 between	 the	 wells.	 (d)	 The	 potential	ܷሺݏሻ	

corresponding	 to	 (a)	 and	 (c).	 Parameters	 corresponding	 to	 Fig.	 13(a‐d):	ߚଵ ൌ ଶߚ	;1.1 ൌ 0.55;	

ߜ ൌ ௦ݓ	;0.03 ൌ ௛ݓ	;0.04 ൌ 0.4.	

Most	 importantly,	 inertia	 enables	 free	 oscillations	 of	ݏ	and	݄,	 provided	 that	 the	 feedback	

coefficient	ߛ	is	not	too	small.25	Figures	13a,b	show	two	types	of	free	oscillations	that	emerge	in	the	

system.	The	first	type	reflects	decaying	oscillations	with	a	characteristic	period	of	roughly	6	months	

around	the	equilibrium	point	inside	the	deep	well.	The	second	type	reflects	a	large‐scale	stable	limit	

cycle	that	carries	sentiment	from	the	deep	well	into	the	shallow	well	and	back	in	approximately	14	

months.	 Such	 large‐scale	 motion	 is	 self‐sustaining,	 as	 it	 is	 fuelled	 by	 the	 coupling	 of	 direct	

information	 and	 sentiment,	 such	 that	 large	 swings	 in	݄	cause	 large	 swings	 in	ݏ	that	 cause	 large	

swings	in	݄	that	cause	large	swings	in	ݏ	and	so	forth.			

Imagine	that	the	flow	of	exogenous	news	were	to	be	interrupted.	Then,	according	to	the	model,	

two	 scenarios	 are	 possible.	 First,	 the	market	may	 converge	 to	 a	 steady	 state	 in	which	 sentiment	

likely	 settles	 at	 the	positive	 equilibrium	value	ݏା	inside	 the	deep	well26,	while	 simultaneously	 the	

level	 of	 direct	 information	 approaches	ߜ.	 Alternatively,	 the	market	may	 go	 into	 a	 steady	 state	 in	

                                                            

25	When	γ	is	 increased	 from	 zero,	 it	 induces	 the	 following	 bifurcations	 of	 the	 equilibrium	 points	 at	 the	

bottom	of	each	potential	well	 (s ൌ sേ):	 stable	node	 ‐>	stable	 focus	 ‐>	unstable	 focus	 ‐>	unstable	node.	Free	

oscillations	 become	 possible	 starting	 from	 the	 first	 bifurcation	 in	 the	 above	 sequence.	 Note	 that	 the	

equilibrium	point	at	the	cusp	of	the	potential	always	remains	an	unstable	saddle.	

26	It	would	be	rather	unusual	if	s	were	to	come	to	rest	at	sି	because,	first,	sentiment	does	not	often	cross	

into	 the	 shallow	well	 and,	 second,	 such	equilibrium	state	may	be	unstable	or	not	 exist	 at	 all,	 as	 the	 critical	

values	of	δ	at	which	sି	vanishes	are	within	the	admissible	range	of	parameter	values.			
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which	 sentiment	 and	direct	 information	 are	 attracted	 to	 the	 limit	 cycle	where	 they	 exhibit	 large‐

scale	self‐perpetuating	oscillations	between	extreme	negative	and	extreme	positive	values.	

Figure	13c	shows	a	regime	immediately	preceding	the	formation	of	the	limit	cycle.	This	regime	

is	a	prime	candidate	for	generating	a	realistic	sentiment	behavior.	It	includes	mid‐term	oscillations	

around	the	focus	in	the	deep	well,	consistent	with	the	bounded	motion	that	we	have	observed	in	the	

empirical	model	and	connected	with	mid‐term	market	 trends	 in	Section	1.2.3.	 It	also	contains	the	

large‐scale	 trajectories,	 located	 in	 the	 vicinity	 of	 the	 (about‐to‐be‐formed)	 limit	 cycle,	 that	 lead	

sentiment	 via	 quasi‐self‐sustaining	 motion	 into	 and	 out	 of	 the	 negative	 sentiment	 territory.	 The	

evolution	of	sentiment	along	these	trajectories	is	consistent	with	its	observed	behavior	at	the	time	

of	market	crashes	and	rallies	(Section	1.2.3).		

Lastly,	we	note	that	this	regime,	which	we	expect	to	be	relevant	to	the	real‐world	stock	markets,	

exists	under	the	realistic	choice	of	parameter	values	consistent	with	the	values	obtained	using	the	

empirical	data.27		

	

                                                            

27	The	parameters	 in	 the	 theoretical	model	 (eq.	13	and	Fig.	13c)	have	been	chosen	 to	 coincide	with	 the	

parameters	of	the	empirical	model	(Table	I),	except	that	ߚଶ ൌ 0.55	(theoretical)	whereas	ߚଶ ൌ 1.0	(empirical).	

Additionally:	 ߛ	.1 ൌ 56	therefore	ݓߛ௦ ൌ 2.2,	 so	 that	 the	 feedback	 term	ݏߛሶ	participates	 in	 the	 leading	 order	

dynamics	 in	 equation	 (13c)	 while	 not	 dominating	 other	 terms.	 ߜ	.2 ൌ 0.03	so	 that	 the	 constant	ܿ ൌ ߜଶߚ ൌ

0.017,	which	determines	the	distortion	of	the	potential,	is	close	to	the	value	in	the	empirical	model	(Table	I).	3.	

It	 follows	 from	 the	definitions	of	 	equation	in	ߜ	and	ߛ	 (13)	 that	ߜ ൌ 	Table	from	௦ݓ	and	ܽଵ	Using	ଵ.ܽ/ݎߛ I	 and	

the	 daily	 average	 logarithmic	 growth	 rate	ݎ ൌ 	2.24 ൈ 10ିସ	of	 the	 DJ	 Industrial	 Average	 Index	 since	 1914	

(interpolated	 using	 annual	 data),	 we	 estimate	ݎߛ/ܽଵ~0.034	which	 is	 close	 to	ߜ ൌ 0.030	in	 the	 theoretical	

model.	
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2.2.2.	Non‐autonomous	case:	૆ሺܜሻ ് ૙	

The	 news	 flow	ߦሺݐሻ	acts	 as	 a	 random	 force	 in	 system	 (13).	 To	 study	 its	 influence,	 we	 make	 the	

assumption	that	ߦሺݐሻ	is	normally‐distributed	white	noise	with	zero	mean	and	unit	variance.28		

The	system’s	behavior	will	depend	significantly	on	the	relative	magnitude	of	 the	terms	ݏߛሶ 	and	

	in	ሻݐሺߦߢ equation	 (13c).	 Indeed,	 if	ݏ|ߛሶ| ≪ 	,|ሻݐሺߦ|ߢ the	 dominant	 noise	 will	 drive	݄	and	ݏ	randomly	

around	 the	 potential	 well,	 leading	 to	 nearly	 stochastic	 behavior	 in	 price	݌.	 Conversely,	 if	

|ሶݏ|ߛ ≫ 	,|ሻݐሺߦ|ߢ the	 system’s	 dynamics	 will	 primarily	 consist	 of	 a	 piecewise	 motion	 along	 the	

segments	of	phase	trajectories	in	the	autonomous	case,	as	on	average	݄	and	ݏ	will	travel	far	along	a	

trajectory	by	 the	 time	 the	noise	will	 have	been	able	 to	displace	 them.29	In	 this	 case,	 the	 resulting	

behavior	of	market	price	will	have	a	discernible	deterministic	component	to	it.		

We	set	ߢ ൌ 1	as	this	permits	both	terms	to	participate	in	the	leading	order	dynamics.30	However,	

as	ݏ|ߛሶ|	is	a	function	of	݄	and	ݏ	(eq.	13b),	the	relative	importance	of	these	terms	actually	depends	on	

the	location	of	any	given	trajectory,	which	means	that	the	above‐discussed	characteristic	dynamics	

                                                            

28	Note	that	in	simulations	the	noise	ߦሺݐሻ	is,	strictly	speaking,	white	only	on	a	daily	(weekly,	monthly,	etc.)	

basis,	i.e.	when	ݐ	can	be	expressed	in	multiples	of	business	day.	This	is	because	ߦሺݐሻ	can	have	nonzero	intraday	

autocorrelations	due	to	intraday	interpolation	in	the	numerical	scheme.	

29	This	 statement	 is	 only	 valid	 if	 the	 system	 is	 structurally	 stable	 (i.e.	 non‐chaotic)	when	 perturbed	 by	

noise,	which	 is	 likely	 the	 case	 as	we	have	not	 been	 able	 to	 find	 the	 traces	of	 chaos	 (e.g.	 positive	Lyapunov	

exponents)	in	it	for	nonzero	ߦሺݐሻ	in	the	relevant	range	of	parameter	values.	(As	a	side	comment,	we	observed	

positive	 Lyapunov	 exponents	 in	 situations	 where	 system	 (13)	 was	 forced	 by	 a	 periodic	 function	 of	 time,	

instead	of	noise).	

ߢ	30 ൌ 1,	so	ߦ|ߢሺݐሻ|~	ߪߢక ൌ 1,	where	ߪక	is	the	unit	standard	deviation	of	ߦ,	therefore		ߦ|ߢሺݐሻ|	has	the	same	

order	of	magnitude	as	ݏ|ߛሶ|~ݓߛ௦ ≲ 2.2	for	|ݏሶ| ≲ 1.		
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Figure	 18:	 Distributions	 of	 21‐day	 log	 returns.	 (a,b)	 Theoretical	 model	 (60	 years,	 i.e.	 720	 data	

points)	and	the	S&P	500	Index	(1950‐2012).	 (c,d)	Empirical	model	(1996‐2012)	and	the	S&P	500	

Index	(1996‐2012).	To	make	comparison	easier,	the	distributions	are	normalized	to	yield	zero	mean	

and	unit	variance.	The	corresponding	normal	distributions	are	plotted	as	well.	The	horizontal	axis,	

denominated	 in	 the	 units	 of	 standard	 deviation,	 indicates	 the	 normal	 distribution	 1st	 and	 5th	

percentiles.		

The	 results	 presented	 in	 this	 section	 enable	 us	 to	 conclude	 that,	 first,	 there	 exist	 substantial	

similarities	between	the	behavior	of	investor	sentiment	produced	by	the	theoretical	model	and	the	

empirical	model;	second,	there	exist	substantial	similarities	in	the	price	behavior	generated	by	the	

theoretical	model	and	that	observed	in	the	stock	market;	and,	third,	the	theoretical	model	replicates	

characteristic	features	of	the	stock	market,	such	as	non‐normally	distributed	returns.	

2.2.3.	Discussion	

Results	produced	by	model	(13)	are	in	agreement	with	the	empirical	study.	In	particular,	the	model	

exhibits	two	distinct	behaviors	represented	by	different	characteristic	frequencies	at	which	investor	

sentiment	 evolves:	 mid‐term	 oscillations	 in	 the	 positive	 well	 consistent	 with	 mid‐term	 market	

trends	and	large‐scale,	quasi‐self‐sustaining	motion	consistent	with	market	rallies	and	crashes.		

Exogenous	news	flow	is	a	random	force	that	thrusts	sentiment	inside	the	potential	well.	It	can	

occasionally	force	sentiment	across	the	regions	of	different	behavior,	resulting	in	a	switch	of	market	

regimes.	We	have	seen	that	the	influence	of	news	is	not	uniform.	There	is	a	wide	range	of	regimes	

between	two	extremes:	the	first	where	the	news	(noise)	dominate	leading	to	a	nearly	random	price	

walk	and	the	second	where	the	news	(noise)	have	low	impact	resulting	in	an	almost	deterministic	

price	development.	This	implies	that,	according	to	the	model,	the	market’s	evolution	path	can	take	it	

through	a	variety	of	regimes,	some	of	which	may	have	elements	of	deterministic	dynamics.	
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We	have	demonstrated	that	a	stochastically	forced,	deterministic	nonlinear	model	described	by	

equations	(13)	is	capable	of	generating	complex	behaviors	representative	of	actual	market	regimes.	

For	 example,	we	 have	 been	 able	 to	 approximately	 reproduce	 the	 behavior	 of	 the	 S&P	 500	 Index	

from	2004	to	2010	by	substituting	the	empirical	temperature	profile	for	that	same	period	into	the	

model	 (which	 implies	 that	 temperature	 plays	 a	 significant	 role	 in	 the	 development	 of	 market	

regimes).	 The	model	 has	 been	 shown	 to	 replicate	 essential	 features	 of	 the	 actual	 distributions	 of	

stock	market	returns,	such	as	nonzero	skewness,	positive	kurtosis	and	fat	(albeit	truncated)	tails.	In	

addition,	 the	 model	 has	 provided	 an	 explanation	 of	 market	 trends	 and	 crashes	 in	 terms	 of	

characteristic	frequencies	of	sentiment	development.	

The	appearance	of	characteristic	frequencies	in	the	model	is	intriguing	and	deserves	conjecture	

on	 its	 causes	and	 implications.	Model	 (13)	 is	a	heavily	approximated	version	of	 the	more	general	

Ising	model	defined	by	equation	(A1)	in	Appendix	A,	the	dynamics	of	which	are	largely	determined	

by	the	topology	of	interaction	among	the	agents	that	constitute	it.	In	particular,	model	(13)	has	been	

derived	under	the	assumption	that	the	pattern	of	interaction	in	equation	(A1)	is	all	to	all.	It	is	known	

that	 the	 all‐to‐all	 pattern	 prevents	 Ising	 spins	 (agents)	 from	 assembling	 into	 clusters,	 whereas	

interactions	that	are	not	as	radically	simplified	can	produce	heterogeneous	structures	(e.g.	Cont	and	

Bouchaud	 (2000))	 –	 which,	 in	 our	 case,	 represent	 the	 clusters	 of	 investors	 and	 analysts	

characterized	by	coaligned	sentiments.33		

                                                            

33	As	mentioned	earlier,	the	all‐to‐all	topology	is	the	leading‐order	approximation	for	general	interaction	

topology	in	the	Ising	model	and	so	 is	a	convenient	starting	point	 for	studying	its	key	features.	We	note	that	

prices	generated	by	the	empirical	model	(eq.	4	and	10),	which	also	employs	the	all‐to‐all	interaction	pattern,	

can	contain	indirect	evidence	of	cluster	dynamics	because	the	input	variable	ܪሺݐሻ	is	based	on	empirical	data.	



Page	59	of	97	

 

The	presence	of	clusters	can	lead	to	diverse	dynamics	of	interactions	on	various	timescales.	This	

is	 because	 a	 cluster’s	 size	 determines	 its	 reaction	 time	 to	 various	 disturbances,	 such	 as	 adjacent	

clusters,	random	influences	or	external	forces	(the	news),	such	that	the	larger	the	size,	the	slower	

the	 reaction.	As	 different	 reaction	 times	 of	 differently‐sized	 clusters	 to	 incoming	 information	 can	

represent	investment	horizons	or	allocation	processes	of	various	investor	groups,	the	general	model	

(eq.	A1)	can	simulate	the	dynamics	of	market	participants	ranging	from	private	investors	to	pension	

plans.	

Consequently,	 the	 general	model	 (eq.	 A1)	 can	 exhibit	multiple	 frequencies	 of	 interaction.	We	

may	expect	 that	 the	actual	stock	market	also	contains	different	characteristic	 frequencies,	each	of	

which	signifies	a	distinct	behavior	that	together,	through	interactions,	produce	a	constantly	shifting	

pattern	of	regimes	driving	the	development	of	market	price.	And	indeed,	the	fact	that	a	drastically	

simplified	market	model	captured	two	characteristic	frequencies	that	correspond	to	actual	market	

regimes	supports	this	expectation.34		

We	would	like	to	conclude	by	returning	to	the	discussion	of	the	possible	predictability	of	market	

returns	 that	we	have	 touched	upon	 in	 the	beginning	of	 this	 section.	Recall	 that	 the	 characteristic	

frequencies	emerge	in	the	model	as	an	inertial	effect	caused	by	the	feedback	relation	between	direct	

information	 and	 price.	 The	 existence	 of	 inertia	 has	 another	 consequence:	 the	 model	 acquires	 a	

resistance	 to	 change	 in	 direction	 and,	 as	 a	 result,	 its	 behavior	 becomes	 predictable	 in	 situations	

where	 inertial	 effects	 outweigh	 noise.	 In	 other	 words,	 based	 on	 the	 theoretical	 results	 and	 the	

support	 of	 the	empirical	 evidence,	we	 can	 expect	 the	 stock	market	 to	 include	 regimes	with	 some	

elements	of	deterministic	dynamics,	which	can	in	principle	be	predicted.		

                                                            

34	The	arguably	quasiperiodic	pattern	of	the	autocorrelations	of	ܪሺݐሻ	(Fig.	11a)	can	be	a	further	sign	of	the	

presence	of	characteristic	frequencies	in	the	market	price	series.		
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As	an	illustration,	let	us	consider	how	the	models	developed	here	could	be	applied	for	making	a	

market	forecast.	A	possible	procedure	is	as	follows:	measure	daily	ܪሺݐሻ,	obtain	ݏሺݐሻ	from	equation	

(4),	 find	the	corresponding	 location	݄ሺݐሻ, 	portrait	phase	the	on	ሻݐሺݏ (e.g.	Fig.	13c)	and	forecast	the	

following	day’s	return	expectation	which,	being	a	function	of	the	current	day’s	location	on	the	phase	

portrait,	may	be	nonzero.	Of	course,	model	(13)	is	likely	too	crude	to	produce	a	meaningful	forecast.	

More	sophisticated	patterns	of	interaction	may	be	needed	to	construct	more	realistic	models.	In	the	

light	 of	 the	 above	 discussion,	 such	 randomly‐driven	 deterministic	 models	 are	 likely	 to	 generate	

complex	 dynamics,	 resulting	 in	 the	 presence	 of	 random,	 deterministic	 chaotic	 and	 deterministic	

non‐chaotic	 behaviors.	However,	 unlike	 the	 case	 of	 the	 random	walk,	 forecasting	 the	 behavior	 of	

complex	deterministic	systems	can	be	possible	by	blending	models	with	observations,	as	is	done,	for	

example,	 in	meteorology	 and	 oceanography	 and	 can	 probably	 be	 done	 as	well	 in	 the	 case	 of	 the	

financial	markets.35	

3.	Conclusion	

This	 paper	 introduced	 a	 framework	 for	 understanding	 stock	 market	 behavior,	 upon	 which	 the	

model	 of	 stock	market	dynamics	was	developed	and	 studied.	We	have	demonstrated,	 empirically	

and/or	theoretically,	that	according	to	this	model:	

1. The	stock	market	dynamics	can	be	explained	in	terms	of	the	interaction	among	three	variables:	

direct	 information	 (defined	 in	 Section	 1.1),	 investor	 sentiment	 (defined	 in	 Section	 1.2)	 and	

market	price	–	as	the	theoretical	and	empirical	results	are	in	agreement	and	show	a	reasonably	

good	fit	with	the	observations.		

                                                            

35	This	is	the	direction	of	our	future	research.	As	a	preliminary	finding,	we	would	like	to	report	that	simple	

prototypes	 of	 algorithmic	 trading	 strategies	 built	 upon	 the	 framework	 developed	 here	 have	 produced	

promising	backtested	results,	supportive	of	the	above‐described	approach	to	market	forecasting.	
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2. The	effectiveness	 of	 the	 influence	 of	 information	on	 investors	 is	 determined	by	 the	 degree	of	

directness	 of	 its	 interpretation	 in	 relation	 to	 the	 expectations	 of	 future	market	 performance.	

Direct	 information	 –	 information	 that	 explicitly	mentions	 the	 direction	 of	 anticipated	market	

movement		–	impacts	investors	most.	

3. In	 addition	 to	 being	 forced	 by	 direct	 information,	 the	 evolution	 of	 investor	 sentiment	 is	 also	

significantly	 influenced,	 first,	 by	 the	 interaction	 among	 investors	 and,	 second,	 by	 the	 level	 of	

disorder	 in	 the	 market	 given	 by	 the	 vacillating	 balance	 between	 the	 herding	 and	 random	

behavior	 of	 investors.	 The	 influence	 due	 to	 the	 second	 factor	 is	 determined	 by	 the	 economic	

analog	of	 temperature	(introduced	 in	Section	1.2.1),	 the	profile	of	which	can	be	deduced	from	

the	empirical	model.	

4. Market	price	develops	differently	on	different	 timescales:	on	shorter	 timescales	(e.g.	days	and	

weeks),	price	changes	proportionally	to	the	change	in	sentiment,	while	on	longer	timescales	(e.g.	

months	and	years),	price	changes	proportionally	to	the	deviation	of	sentiment	from	a	reference	

level	that	is	generally	nonzero.	As	a	result,	price	evolution	is	naturally	decomposed	into	a	long‐

term,	large‐scale	variation	and	short‐term,	small‐to‐mid‐scale	fluctuations.	

5. In	the	market,	herding	behavior	prevailed	(to	a	small	degree)	over	random	behavior	during	the	

studied	period	(1996‐2012).	However,	the	level	at	which	these	behaviors	were	balanced	varied	

gradually	over	time	such	that,	generally,	herding	increased	during	bull	markets	and	decreased	

during	bear	markets.	The	level	of	balance	affects	market	volatility	and	the	probability	of	market	

crashes.	 There	 is	 a	 connection	 between	 changes	 in	 this	 balance	 and	 observed	 economic	

fluctuations	(the	business	cycle).		

6. Long‐term	 sentiment	 trends	 show	 a	 substantial	 temporal	 lead	 over	 long‐term	 market	 price	

trends.	 This	 result	 may	 be	 of	 practical	 importance	 for	 the	 development	 of	 trend‐following	

strategies,	as	a	change	in	sentiment	trend	could	be	a	precursor	to	a	change	in	price	trend.	

7. Information	related	to	price	changes	plays	an	important	role	in	market	dynamics	by	inducing	a	

feedback	 loop:	 information	 ‐>	 sentiment	 ‐>	 price	 ‐>	 information.	 This	 leads	 to	 a	 nonlinear	
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dynamic	of	interaction,	which	explains	the	existence	of	certain	market	behaviors,	such	as	trends,	

rallies	 and	 crashes.	 It	 is	 responsible	 for	 the	 familiar	 non‐normal	 shape	 of	 the	 stock	 market	

return	distribution.	

8. Exogenous	news	act	as	a	random	force	that	displaces	 investor	sentiment	from	the	equilibrium	

and	 occasionally	 causes	 market	 dynamics	 to	 switch	 from	 one	 regime	 to	 another.	 Two	

equilibrium	states	are	possible.	In	the	first	regime,	sentiment	and	price	remain	constant.	In	the	

second	 regime,	 sentiment	 oscillates	 between	 extreme	 negative	 and	 positive	 values,	 driving	

alternating	bear	and	bull	markets.	

9. The	 coupling	 of	 price	 and	 information	 creates	 feedback,	 whereby	 information	 causes	 price	

changes	 and	 price	 changes	 generate	 information	 (paragraph	 7).	 Additionally,	 the	 resulting	

dynamic	further	complicates	the	picture,	leading	to	a	delayed	reaction	between	these	variables,	

such	 that,	 for	example,	 today’s	price	 change	may	be	 influenced	by	 information	related	 to	past	

price	changes,	along	with	other	news,	over	previous	days,	weeks	and	months.	This	implies	that	

the	notion	of	 cause	and	effect	does	not	 simplistically	 apply	 to	market	dynamics,	 as	 cause	and	

effect	become,	in	a	sense,	intertwined.	

10. The	nonlinear	dynamic	underlying	sentiment	evolution	contains	both	deterministic	and	random	

components.	 The	 deterministic	 component	 in	 some	 market	 regimes	 is	 stronger,	 while	 other	

regimes	may	be	dominated	by	the	random	component.	Developing	an	understanding	of	which	

market	regime	takes	place	at	which	time	can	be	possible	by	combining	models	and	observations,	

which	could	potentially	facilitate	market	return	forecasts.				

	

Acknowledgements	

We	 are	 grateful	 to	 Dow	 Jones	 &	 Company	 for	 providing	 access	 to	 Factiva.com	 news	 archive.	We	

would	 also	 like	 to	 thank	 John	 Orthwein	 for	 editing	 this	 paper	 and	 contributing	 ideas	 on	 its	

readability.		



Page	63	of	97	

 

Appendix	A:	Equation	for	sentiment	dynamics	

We	 base	 the	 derivation	 of	 a	 dynamic	 equation	 for	 sentiment	 evolution	 in	 the	 model	 studied	 in	

Section	2	on	a	physical	analogy	in	which	two	sets	of	interacting	Ising	spins	ݏ௜ ൌ േ1, ݅ ൌ 1… ௦ܰ	and	

௝݄ ൌ േ1, ݆ ൌ 1… ௛ܰ 	are	 acted	 upon	 by	 external	 magnetic	 fields	ܾ௦ሺݐሻ	and	ܾ௛ሺݐሻ,	 respectively.	

Additionally,	 this	 analysis	yields,	 as	 a	particular	 case,	 a	dynamic	equation	 for	 a	 single	 set	of	 Ising	

spins	ݏ௜ ൌ േ1, ݅ ൌ 1… ௦ܰ	in	 the	 presence	 of	 an	 external	 magnetic	 field	ܪሺݐሻ,	 which	 is	 a	 physical	

analogy	of	the	model	studied	in	Section	1.	This	particular	case	is	similar	to	the	statistical	mechanics	

problem	 treated	 by	 Glauber	 (1963),	 Suzuki	 and	 Kubo	 (1968),	 and	 Ovchinnikov	 and	 Onishchuk	

(1988).	

A1.	Properties	of	the	two‐component	Ising	system	

The	Hamiltonian36	of	the	Ising	system	has	the	form:	

࣢ ൌ െ
1
2
෍ܬ௦௜௞ݏ௜ݏ௞ െ

ேೞ

௜ஷ௞

1
2
෍ܬ௛௜௞݄௜݄௞ െ ෍ ௜ݏ௦௛௜௝ܬ ௝݄ െ ௜ݏሻݐ௦෍ܾ௦௜ሺߤ

ேೞ

௜

ேೞ	ே೓

௜,௝

ே೓

௜ஷ௞

െ ሻ݄௜ݐ௛෍ܾ௛௜ሺߤ

ே೓

௜

,	

where		ܬ௦௜௞,	ܬ௛௜௞	and	ܬ௦௛௜௝	are	coefficients	that	determine	the	strength	of	interaction	among	spins;	ߤ௦	

and	ߤ௛	are	magnetic	moments	per	spin;	and	ܾ௦௜ሺݐሻ	and	ܾ௛௜ሺݐሻ	are	external	magnetic	fields.	

If	we	assume	that		

௦௜௞ܬ ൌ ௦ܬ ൌ ௦ሺܬ ௦ܰሻ,	

௛௜௞ܬ ൌ ௛ܬ ൌ ௛ሺܬ ௛ܰሻ,	

௦௛௜௝ܬ ൌ ௦௛ܬ ൌ ௦௛ሺܬ ௦ܰ, ௛ܰሻ,	

                                                            

36	In	this	appendix	we	revert	to	the	notation	and	terminology	commonly	used	in	physics.	
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ܾ௦௜ሺݐሻ ൌ ܾ௦ሺݐሻ,	

ܾ௛௜ሺݐሻ ൌ ܾ௛ሺݐሻ,	

then	the	Hamiltonian	becomes	

࣢ሺܵ, ,ܪ ሻݐ ൌ െ ൤
௦ܬ
2
ሺܵଶ െ ௦ܰሻ ൅

௛ܬ
2
ሺܪଶ െ ௛ܰሻ ൅ ܪ௦௛ܵܬ ൅ ሻܵݐ௦ܾ௦ሺߤ ൅ 	1ሻܣሺ																																		൨,ܪሻݐ௛ܾ௛ሺߤ

where	

ܵ ൌ ∑ ௜ݏ
ேೞ
௜ୀଵ , ܪ ൌ ∑ ௝݄

ே೓
௝ୀଵ .		

In	what	 follows	we	 assume	 that	 in	 the	 thermodynamic	 limit	 ( ௦ܰ → ∞, ௛ܰ → ∞)	 the	 values	 of		

௦ܬ ௦ܰ	,	ܬ௛ ௛ܰ	,	ܬ௦௛ ௦ܰ	and	ܬ௦௛ ௛ܰ	are	finite	and	denote	them	as	

lim
ேೞ→ஶ

ሺܬ௦ ௦ܰሻ ൌ ଵଵܬ ,				 limே೓→ஶ
ሺܬ௛ ௛ܰሻ ൌ ଶଶܬ ,			 limேೞ→ஶ

ே೓→ஶ

ሺܬ௦௛ ௛ܰሻ ൌ ଵଶܬ ,			 limேೞ→ஶ
ே೓→ஶ

ሺܬ௦௛ ௦ܰሻ ൌ 	2ሻܣሺ																														ଶଵ.ܬ

In	 situations	 where	 the	 external	 fields	 are	 stationary,	ܾ௦ሺݐሻ ൌ ܾ௦	and	ܾ௛ሺݐሻ ൌ ܾ௛,	 the	 Ising	

system	can	be	in	the	state	of	thermodynamic	equilibrium.	In	this	case,	the	probability	of	finding	it	in	

the	state	with	the	values	of	total	spins	equal	to	ܵ	and	ܪ,	respectively,	is	given	by		

଴ܲሺܵ, ሻܪ ൌ
݃ሺܵሻ݃ሺܪሻeି	

ாሺௌ,ுሻ
ఏ

ܼ
,																																																																																																																														ሺ3ܣሻ	

where	ܧሺܵ, ሻܪ ൌ ࣢ሺܵ, 	of	units	the	in	measured	temperature	is	ߠ	and	system	the	of	energy	the	is	ሻܪ

energy.	The	functions	݃ሺܵሻ	and	݃ሺܪሻ,	given	by	

݃ሺܵሻ ൌ ௦ܰ!

ቀ ௦ܰ ൅ ܵ
2 ቁ ! ቀ ௦ܰ െ ܵ

2 ቁ !
			and			݃ሺܪሻ ൌ ௛ܰ!

ቀ ௛ܰ ൅ ܪ
2 ቁ ! ቀ ௛ܰ െ ܪ

2 ቁ !
	,	
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are	the	degrees	of	degeneracy	of	the	states	for	which	total	spins	are	equal	to	ܵ	and	ܪ,	respectively.	ܼ	

is	a	normalization	factor	determined	from	the	condition	

෍ ෍ ଴ܲሺܵ, ሻܪ ൌ 1

ே೓

ுୀିே೓

ேೞ

ௌୀିேೞ

,	

which	leads	to	

ܼሺ ௦ܰ, ௛ܰ, ሻݐ ൌ ෍ ෍ ݃ሺܵሻ݃ሺܪሻeି	
ாሺௌ,ுሻ
ఏ

ே೓

ுୀିே೓

,

ேೞ

ௌୀିேೞ

	

called	the	partition	function.		

In	 the	 limit	 of	 large	 ௦ܰ	and	 ௛ܰ	ሺ ௦ܰ ≫ 1	, ௛ܰ ≫ 1	ሻ,	 it	 is	 convenient	 to	 change	 from	 discrete	

variables	 ܵ	ሺെ ௦ܰ, െ ௦ܰ ൅ 2,… ௦ܰ െ 2, ௦ܰሻ 	and	 ሺെ	ܪ ௛ܰ, െ ௛ܰ ൅ 2,… ௛ܰ െ 2, ௛ܰሻ 	to	 quasi‐continuous	

variables	

ݏ ൌ
ܵ

௦ܰ
,			ሺെ1 ൑ ݏ ൑ 1ሻ,		

݄ ൌ
ܪ

௛ܰ
,			ሺെ1 ൑ ݄ ൑ 1ሻ.	

We	can	rewrite	the	above	equations	in	new	variables	ݏ	and	݄	to	obtain	

,ݏሺܧ ݄ሻ ൌ െ ௦ܰ

2
൬ܬଵଵݏଶ ൅ ݄ݏଵଶܬ ൅ ݏ௦ܾ௦ߤ2 െ

ଵଵܬ
௦ܰ
൰ െ ௛ܰ

2
൬ܬଶଶ݄ଶ ൅ ݄ݏଶଵܬ ൅ ௛ܾ௛݄ߤ2 െ

ଶଶܬ
௛ܰ
൰,	

्ሺݏ, ݄ሻ ൌ ln	݃ሺܵሻ݃ሺܪሻ

ൌ ௦ܰ

2
൭ݏ	ln ൬

1 െ ݏ
1 ൅ ݏ

൰ െ ln
ሺ1 െ ଶሻݏ

4
൅
1

௦ܰ
ln ൬

2
ߨ ௦ܰሺ1 െ ଶሻݏ

൰൱

൅ ௛ܰ

2
൭݄	ln ൬

1 െ ݄
1 ൅ ݄

൰ െ ln
ሺ1 െ ݄ଶሻ

4
൅

1

௛ܰ
ln ൬

2
ߨ ௛ܰሺ1 െ ݄ଶሻ

൰൱.	
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Then	the	equilibrium	distribution	function	 ଴ܲሺݏ, ݄ሻ	takes	the	form:	

଴ܲሺݏ, ݄ሻ ൌ
exp ൜्ሺݏ, ݄ሻ െ

,ݏሺܧ ݄ሻ
ߠ ൠ

ܼ
ൌ
exp ൜െ

,ݏሺܨ ݄ሻ
ߠ ൠ

ܼ
,	

where		

,ݏሺܨ ݄ሻ ൌ ,ݏሺܧ ݄ሻ െ ,ݏሺ्ߠ ݄ሻ

ൌ െ ௦ܰ

2
൭ܬଵଵݏଶ ൅ ݄ݏଵଶܬ ൅ ݏ௦ܾ௦ߤ2 ൅ ߠ ቆݏ	ln ൬

1 െ ݏ
1 ൅ ݏ

൰ െ ln
ሺ1 െ ଶሻݏ

4
ቇ ൅ ܱ ൬

1

௦ܰ
൰൱

െ ௛ܰ

2
൭ܬଶଶ݄ଶ ൅ ݄ݏଶଵܬ ൅ ௛ܾ௛݄ߤ2 ൅ ߠ ቆ݄	ln ൬

1 െ ݄
1 ൅ ݄

൰ െ ln
ሺ1 െ ݄ଶሻ

4
ቇ ൅ ܱ ൬

1

௛ܰ
൰൱.	

Let	 us	 find	 the	 values	 of	ݏ	and	݄	for	 which	 the	 distribution	 function	 ଴ܲሺݏ, ݄ሻ	has	 a	 maximum	

(minimum).	 Neglecting	 terms	ܱ ቀ
ଵ

ேೞ
ቁ	and	ܱ ቀ

ଵ

ே೓
ቁ	in	ܨሺݏ, ݄ሻ,	 we	 find	 from	 the	 extremum	 condition	

డிሺ௦,௛ሻ

డ௦
ൌ 0	and	

డிሺ௦,௛ሻ

డ௛
ൌ 0	that	

ە
۔

ݏଵଵܬ2ۓ ൅ ൬ܬଵଶ ൅
௛ܰ

௦ܰ
ଶଵ൰ܬ ݄ ൅ ௦ܾ௦ߤ2 ൌ lnߠ ൬

1 ൅ ݏ
1 െ ݏ

൰ ,

ଶଶ݄ܬ2 ൅ ൬ܬଶଵ ൅
௦ܰ

௛ܰ
ଵଶ൰ܬ ݏ ൅ ௛ܾ௛ߤ2 ൌ lnߠ ൬

1 ൅ ݄
1 െ ݄

൰ .
	

Accounting	for	
௃మభ
௃భమ

ൌ
ேೞ
ே೓
	,	we	can	rewrite	this	system	of	equations	as	

൞
ݏଵଵܬ ൅ ଵଶ݄ܬ ൅ ௦ܾ௦ߤ ൌ

ߠ
2
ln ൬

1 ൅ ݏ
1 െ ݏ

൰ ,

ଶଶ݄ܬ ൅ ݏଶଵܬ ൅ ௛ܾ௛ߤ ൌ
ߠ
2
ln ൬

1 ൅ ݄
1 െ ݄

൰ ,
	

or	equivalently:	

ቊ
ݏ ൌ tanh൫ߚሺܬଵଵݏ ൅ ଵଶ݄ܬ ൅ ,௦ܾ௦ሻ൯ߤ

݄ ൌ tanh൫ߚሺܬଶଶ݄ ൅ ݏଶଵܬ ൅ ,௛ܾ௛ሻ൯ߤ
																																																																																																																					ሺ4ܣሻ	
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where	ߚ ൌ 	.ߠ/1

As	a	simple	example,	let	us	consider	a	case	in	which	ܾ௦ ൌ ܾ௛ ൌ ଵଵܬ	,0 ൌ ଶଶܬ ൌ ଵଶܬ ൌ ଶଵܬ ൌ 	Then	଴.ܬ

ሺ4ܣሻ	is	reduced	to		

ቊ
ݏ ൌ tanh൫݆଴ሺݏ ൅ ݄ሻ൯,

݄ ൌ tanh൫݆଴ሺݏ ൅ ݄ሻ൯,
	

where	݆଴ ൌ 	.଴ܬߚ It	 follows	 that	ݏ ൌ ݄	and	ݏ ൌ tanhሺ2݆଴ݏሻ.	 If	2݆଴ ൑ 1,	 there	 is	 only	 one	 solution:	

ݏ ൌ ݄ ൌ 0	(zero	magnetization).	If	2݆଴ ൐ 1,	there	exist	three	solutions	with	ݏ ൌ 0,േݏ଴,	two	of	which,	

namely	ݏ ൌ േݏ଴	(nonzero	 magnetization),	 correspond	 to	 the	 maxima	 of	 the	 distribution	 function	

଴ܲሺݏ, ݄ሻ.	Thus,	the	critical	temperature	of	the	phase	transition	is	in	this	case	ߠ௖ ൌ 	a	that	note	We	௢.ܬ2

more	general	case	is	treated	in	Appendix	C.		

It	is	worthwhile	noting	that	phase	transition	is	possible	even	in	the	case	of	ܬଵଵ ൌ ଶଶܬ ൌ 0.	Then:		

൜
ݏ ൌ tanhሺ݆ଵଶ݄ሻ,
݄ ൌ tanhሺ݆ଶଵݏሻ,

	

where	݆ଵଶ ൌ ݆ଶଵ	ଵଶ,ܬߚ ൌ ݆ଵଶ݆ଶଵ	for	solutions	nonzero	yields	which	ଶଵ,ܬߚ ൐ 1.	

A2.	Master	(kinetic)	equation	

To	describe	non‐equilibrium	dynamics,	we	introduce	distribution	function	ܲሺܵ, ,ܪ 	the	defines	that	ሻݐ

probability	 that	 the	 values	 of	 the	 total	 spins	 of	 configurations	ሼݏ௜ሽ	and	ሼ݄௜ሽ	at	 time	 t	 are	 equal	 to	

ܵ	and	ܪ,	respectively.	If	ܲሺܵ, ,ܪ 	moment	any	at	quantity	statistical	any	calculate	can	we	known,	is	ሻݐ

		by	given	are	ܪ	and	ܵ	spins	total	of	values	expectation	the	instance,	For	.ݐ

ܵሺݐሻ ൌ 〈ܵ〉௧ ൌ ෍ ෍ ܵ	ܲሺܵ, ,ܪ 5ܽሻܣሺ																																																																																																												ሻ,ݐ

ேೞ

ௌୀିேೞ

ே೓

ுୀିே೓
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ሻݐሺܪ ൌ ௧〈ܪ〉 ൌ ෍ ෍ ,ሺܵܲ	ܪ ,ܪ ሻݐ

ே೓

ுୀିே೓

ேೞ

ௌୀିேೞ

.																																																																																																									ሺ5ܾܣሻ	

Note	that	summation	in	(A5)	is	carried	out	across	the	integer	values:	ܵ ൌ െ ௦ܰ, െ ௦ܰ ൅ 2,… ௦ܰ െ

2, ௦ܰ	and	ܪ ൌ െ ௛ܰ, െ ௛ܰ ൅ 2,… ௛ܰ െ 2, ௛ܰ.	 	 We	 can	 obtain	ܲሺܵ, ,ܪ 	by	ሻݐ deriving	 and	 solving	 the	

corresponding	master	equation	for	the	evolution	of	ܲሺܵ, ,ܪ 	we	equation,	master	the	formulate	To	ሻ.ݐ

define	the	probability	of	the	system	transiting	from	one	configuration	of	spins	into	another	per	unit	

time	as	ܹሺܵ, ,ോܵ	;ܪ 	it	where	ോሻ,ܪ is	assumed	that	transitions	occur	when	spins	spontaneously	flip	

as	 a	 result	 of	 uncontrolled	 energy	 exchange	with	 a	 heat	 bath.	 Considering	 that	ܲሺܵ, ,ܪ 	evolves	ሻݐ

only	due	to	these	transitions,	we	conclude	that	it	must	satisfy	the	following	master	equation:			

݀	ܲሺܵ, ,ܪ ሻݐ
ݐ݀

ൌ െ ෍ ෍ ܹሺܵ,ܪ;	ܵോ, ሻ/ܪ

ே೓

ு/ୀିே೓

ேೞ

ௌ/ୀିேೞ

ܲሺܵ, ,ܪ ሻݐ

൅ ෍ ෍ ܲሺܵോ, ,/ܪ ,ሻܹሺܵോݐ ;/ܪ ܵ, ሻܪ

ே೓

ு/ୀିே೓

ேೞ

ௌ/ୀିேೞ

.																																																																							ሺ6ܣሻ	

Note	that	the	 first	sum	in	ሺ6ܣሻ	represents	the	total	probability	per	unit	 time	that	 the	system	‘flips	

out’	of	 the	state	ሼܵ, 	unit	per	probability	total	the	to	corresponds	sum	second	the	whereas	ሽ,ܪ time	

that	the	system	‘flips	in’	to	the	state	ሼܵ, 		.ሽܪ

Let	 us	 assume	 that	 transitions	 occur	 only	 due	 to	 single	 spin	 flips,	 i.e.	ܵ	and	ܪ	change	 at	 each	

transition	by	േ2.	Then	equation	ሺ6ܣሻ	becomes	

݀	ܲሺܵ, ,ܪ ሻݐ
ݐ݀

ൌ െ൫ܹሺܵ, ;ܪ 	ܵ ൅ ሻܪ,2 ൅ 	ܹሺܵ, ;ܪ 	ܵ െ ሻܪ,2 ൅ܹሺܵ,ܪ; 	ܵ, ܪ ൅ 2ሻ

൅ܹሺܵ,ܪ; 	ܵ, ܪ െ 2ሻ൯ܲሺܵ, ,ܪ ሻݐ ൅ܹሺܵ ൅ ;ܪ,2 	ܵ, ሻܲሺܵܪ ൅ ,ܪ,2 ሻݐ

൅ܹሺܵ െ ;ܪ,2 	ܵ, ሻܲሺܵܪ െ ,ܪ,2 ሻݐ ൅ܹሺܵ,ܪ ൅ 2; 	ܵ, ,ሻܲሺܵܪ ܪ ൅ 2, ሻݐ

൅ܹሺܵ,ܪ െ 2; 	ܵ, ,ሻܲሺܵܪ ܪ െ 2, 	7ሻܣሺ																																																																																									ሻ.ݐ
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Therefore,	the	problem	is	now	reduced	to,	 first,	deducing	the	form	of	ܹ	and	then	solving	ሺ7ܣሻ.	To	

determine	ܹ	we	can	use	the	detailed	balance	condition:		

ܹሺܵ, ,ോܵ	;ܪ ോሻܪ ଴ܲሺܵ, ሻܪ ൌ ܹሺܵോ, ;ോܪ ܵ, ሻܪ ଴ܲሺܵോ, 	.ോሻܪ

Here	 ଴ܲሺܵ, 	balance	detailed	the	When	3ሻ.ܣሺ	by	given	function	distribution	equilibrium	the	is	ሻܪ

condition	 is	 satisfied,	 the	 number	 of	 transitions	 per	 unit	 time	 in	 the	 thermodynamic	 equilibrium	

state	from	any	configuration	ሼܵ, ,൛ܵോ	configuration	other	any	into	ሽܪ 	number	the	equals	exactly	ോൟܪ

of	 transitions	 in	 the	 opposite	 direction.	 This	 condition	 imposes	 certain	 constraints	 on	 the	

probability	ܹ,	as	it	must	satisfy	

ܹሺܵ, ,ോܵ	;ܪ ോሻܪ
ܹሺܵോ, ;ോܪ ܵ, ሻܪ

ൌ ଴ܲሺܵോ, ോሻܪ

଴ܲሺܵ, ሻܪ
ൌ
݃൫ܵ/൯݃൫ܪ/൯
݃ሺܵሻ݃ሺܪሻ

exp ቊെ
,ሺܵോܧ ോሻܪ െ ,ሺܵܧ ሻܪ

ߠ
ቋ.																																										ሺ8ܣሻ	

According	to	ሺ8ܣሻ,	the	probabilities	ܹ	in	ሺ7ܣሻ	satisfy	the	following	equations:	

ە
ۖ
۔

ۖ
;ܪ,ሺܹܵۓ 	ܵ േ ሻܪ,2
ܹሺܵ േ 2, ;ܪ ܵ, ሻܪ

ൌ ଴ܲሺܵ േ ሻܪ,2

଴ܲሺܵ, ሻܪ
ൌ
݃ሺܵ േ 2ሻ

݃ሺܵሻ
exp ൜െ

ሺܵܧ േ ሻܪ,2 െ ,ሺܵܧ ሻܪ
ߠ

ൠ ,

ܹሺܵ, ;ܪ 	ܵ, ܪ േ 2ሻ
ܹሺܵ,ܪ േ 2; ܵ, ሻܪ

ൌ ଴ܲሺܵ, ܪ േ 2ሻ

଴ܲሺܵ, ሻܪ
ൌ
݃ሺܪ േ 2ሻ

݃ሺܪሻ
exp ൜െ

,ሺܵܧ ܪ േ 2ሻ െ ,ሺܵܧ ሻܪ
ߠ

ൠ .
	

Using	expressions	for	݃ሺܵሻ,	݃ሺܪሻ	and	ܧሺܵ, 	obtain	we	ሻ,ܪ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ ܹሺܵ,ܪ; 	ܵ േ ሻܪ,2

ܹሺܵ േ ;ܪ,2 ܵ, ሻܪ
ൌ

ሺ ௦ܰ ∓ ܵሻ
2

൬
ሺ ௦ܰ േ ܵሻ

2 ൅ 1൰
expሼേ2ߚሺܬ௦ሺܵ േ 1ሻ ൅ ܪ௦௛ܬ ൅ ,௦ܾ௦ሻሽߤ

ܹሺܵ, ;ܪ 	ܵ, ܪ േ 2ሻ

ܹሺܵ,ܪ േ 2; ܵ, ሻܪ
ൌ

ሺ ௛ܰ ∓ ሻܪ
2

൬
ሺ ௛ܰ േ ሻܪ

2 ൅ 1൰
expሼേ2ߚሺܬ௛ሺܪ േ 1ሻ ൅ ௦௛ܵܬ ൅ .௛ܾ௛ሻሽߤ

																																						ሺ9ܣሻ	

We	seek	ܹሺܵ, ,ോܵ	;ܪ 	:form	the	in	9ሻܣሺ	satisfy	that	ോሻܪ

ܹሺܵ, ;ܪ 	ܵ േ ሻܪ,2 ൌ
ሺ ௦ܰ ∓ ܵሻ

2
௦ݓ

ሺ1 ൅ expሼ∓2ߚሺܬ௦ሺܵ േ 1ሻ ൅ ܪ௦௛ܬ ൅ ௦ܾ௦ሻሽሻߤ
,	
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ܹሺܵ േ ;ܪ,2 ܵ, ሻܪ ൌ ቆ
ሺ ௦ܰ േ ܵሻ

2
൅ 1ቇ

௦ݓ
ሺ1 ൅ expሼേ2ߚሺܬ௦ሺܵ േ 1ሻ ൅ ܪ௦௛ܬ ൅ ௦ܾ௦ሻሽሻߤ

,	

ܹሺܵ, ;ܪ 	ܵ, ܪ േ 2ሻ ൌ
ሺ ௛ܰ ∓ ሻܪ

2
௛ݓ

ሺ1 ൅ expሼ∓2ߚሺܬ௛ሺܪ േ 1ሻ ൅ ௦௛ܵܬ ൅ ௛ܾ௛ሻሽሻߤ
,	

ܹሺܵ, ܪ േ 2; ܵ, ሻܪ ൌ ቆ
ሺ ௛ܰ േ ሻܪ

2
൅ 1ቇ

௛ݓ
ሺ1 ൅ expሼേ2ߚሺܬ௛ሺܪ േ 1ሻ ൅ ௦௛ܵܬ ൅ ௛ܾ௛ሻሽሻߤ

,	

where	ݓ௦	and	ݓ௛	are	the	corresponding	relaxation	rates	and	ߚ ൌ 	.before	defined	as	,ߠ/1

Let	us	define	for	convenience		

ܹሺܵ, ;ܪ 	ܵ േ ሻܪ,2 ൌ
ሺ ௦ܰ ∓ ܵሻ

2
,ሺܵݓ ;ܪ 	ܵ േ 2, 	,ሻܪ

ܹሺܵ േ ;ܪ,2 ܵ, ሻܪ ൌ ቆ
ሺ ௦ܰ േ ܵሻ

2
൅ 1ቇݓሺܵ േ ;ܪ,2 ܵ, 	,ሻܪ

ܹሺܵ, ;ܪ 	ܵ, ܪ േ 2ሻ ൌ
ሺ ௛ܰ ∓ ሻܪ

2
,ሺܵݓ ;ܪ 	ܵ, ܪ േ 2ሻ,	

ܹሺܵ, ܪ േ 2; ܵ, ሻܪ ൌ ቆ
ሺ ௛ܰ േ ሻܪ

2
൅ 1ቇݓሺܵ, ܪ േ 2; ܵ, 	,ሻܪ

where	

,ሺܵݓ ;ܪ 	ܵ േ ሻܪ,2 ൌ
௦ݓ

ሺ1 ൅ expሼ∓2ߚሺܬ௦ሺܵ േ 1ሻ ൅ ܪ௦௛ܬ ൅ ௦ܾ௦ሻሽሻߤ
,	

ሺܵݓ േ ;ܪ,2 ܵ, ሻܪ ൌ
௦ݓ

ሺ1 ൅ expሼേ2ߚሺܬ௦ሺܵ േ 1ሻ ൅ ܪ௦௛ܬ ൅ ௦ܾ௦ሻሽሻߤ
,	

,ሺܵݓ ;ܪ 	ܵ, ܪ േ 2ሻ ൌ
௛ݓ

ሺ1 ൅ expሼ∓2ߚሺܬ௛ሺܪ േ 1ሻ ൅ ௦௛ܵܬ ൅ ௛ܾ௛ሻሽሻߤ
,	

ܪ,ሺܵݓ േ 2; ܵ, ሻܪ ൌ
௛ݓ

ሺ1 ൅ expሼേ2ߚሺܬ௛ሺܪ േ 1ሻ ൅ ௦௛ܵܬ ൅ ௛ܾ௛ሻሽሻߤ
.	
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Then	system	(A8)	takes	the	final	form:	

݀	ܲሺܵ, ,ܪ ሻݐ
ݐ݀

ൌ െ൭
ሺ ௦ܰ ൅ ܵሻ

2
,ሺܵݓ ;ܪ 	ܵ െ ሻܪ,2 ൅

ሺ ௦ܰ െ ܵሻ

2
,ሺܵݓ ;ܪ 	ܵ ൅ ሻܪ,2

൅
ሺ ௛ܰ ൅ ሻܪ

2
,ሺܵݓ ;ܪ 	ܵ, ܪ െ 2ሻ ൅

ሺ ௛ܰ െ ሻܪ

2
,ሺܵݓ ;ܪ 	ܵ, ܪ ൅ 2ሻ൱ܲሺܵ, ,ܪ ሻݐ

൅ ቆ
ሺ ௦ܰ ൅ ܵሻ

2
൅ 1ቇݓሺܵ ൅ ;ܪ,2 ܵ, ሻܲሺܵܪ ൅ ,ܪ,2 ሻݐ

൅ ቆ
ሺ ௦ܰ െ ܵሻ

2
൅ 1ቇݓሺܵ െ ;ܪ,2 ܵ, ሻܲሺܵܪ െ ,ܪ,2 ሻݐ

൅ ቆ
ሺ ௛ܰ ൅ ሻܪ

2
൅ 1ቇݓሺܵ, ܪ ൅ 2; ܵ, ,ሻܲሺܵܪ ܪ ൅ 2, ሻݐ

൅ ቆ
ሺ ௛ܰ െ ሻܪ

2
൅ 1ቇݓሺܵ, ܪ െ 2; ܵ, ,ሻܲሺܵܪ ܪ െ 2, 	10ሻܣሺ																																																									ሻ.ݐ

For	solving	ሺ10ܣሻ	it	is	necessary	to	define	the	initial	distribution	ܲሺܵ, ,ܪ 0ሻ ൌ ଴݂ሺܵ, 	the	as	well	as	ሻ,ܪ

boundary	 conditions,	which	 in	 this	 case	 are	ܲሺܵ, ,ܪ ሻݐ ≡ 0	for	|ܵ| ൐ ௦ܰ	and	|ܪ| ൐ ௛ܰ.	We	 also	 note	

that	equations	ሺ10ܣሻ	are	applicable	in	the	case	of	nonstationary	external	fields	ܾ௦ሺݐሻ	and	ܾ௛ሺݐሻ.	

A3.	Dynamic	equations	for	average	spins	

We	 can	 derive	 the	 equations	 of	 motion	 for	 average	 spins	 ܵሺݐሻ ൌ 〈ܵ〉௧ 	and	ܪሺݐሻ ൌ ௧〈ܪ〉 	by	

differentiating	equation	ሺ5ܣሻ	with	respect	to	time	and	using	equations	ሺ10ܣሻ:	

݀	ܵሺݐሻ

ݐ݀
ൌ ෍ ෍ ܵ

݀	ܲሺܵ, ,ܪ ሻݐ
ݐ݀

	

ே೓

ுୀିே೓

ேೞ

ௌୀିேೞ

ൌ ෍ ܵ௡ሺݐሻ

଼

௡ୀଵ

,	

ሻݐሺܪ	݀

ݐ݀
ൌ ෍ ෍ ܪ

݀	ܲሺܵ, ,ܪ ሻݐ
ݐ݀

	

ே೓

ுୀିே೓

ேೞ

ௌୀିேೞ

ൌ ෍ܪ௡ሺݐሻ,

଼

௡ୀଵ
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where	functions	ܵ௡ሺݐሻ	and	ܪ௡ሺݐሻ	represent	the	results	of	summation	of	the	݊‐th	term	in	the	r.h.s.	of	

ሺ10ܣሻ	multiplied	by	ܵ	and	ܪ,	respectively.	

We	obtain	the	following	expressions	for	ܵ௡ሺݐሻ	and	ܪ௡ሺݐሻ:	

൬ ଵܵሺݐሻ
ሻݐଵሺܪ

൰ ൌ െ ෍ ෍ ൬
ܵ
ܪ
൰
ሺ ௦ܰ ൅ ܵሻ

2
,ሺܵݓ ;ܪ 	ܵ െ ,ሻܲሺܵܪ,2 ,ܪ ሻݐ

ே೓

ுୀିே೓

ேೞ

ௌୀିேೞ

ൌ െ
1
2
〈൬
ܵ
ܪ
൰ ሺ ௦ܰ ൅ ܵሻݓሺܵ, ;ܪ 	ܵ െ 	,ሻ〉௧ܪ,2

൬
ܵଶሺݐሻ
ሻݐଶሺܪ

൰ ൌ െ ෍ ෍ ൬
ܵ
ܪ
൰
ሺ ௦ܰ െ ܵሻ

2
,ሺܵݓ ;ܪ 	ܵ ൅ ,ሻܲሺܵܪ,2 ,ܪ ሻݐ

ே೓

ுୀିே೓

ேೞ

ௌୀିேೞ

ൌ െ
1
2
〈൬
ܵ
ܪ
൰ ሺ ௦ܰ െ ܵሻݓሺܵ, ;ܪ 	ܵ ൅ ሻ〉௧ܪ,2 ,	

൬
ܵଷሺݐሻ
ሻݐଷሺܪ

൰ ൌ െ ෍ ෍ ൬
ܵ
ܪ
൰
ሺ ௛ܰ ൅ ሻܪ

2
,ሺܵݓ ;ܪ 	ܵ, ܪ െ 2ሻܲሺܵ, ,ܪ ሻݐ

ே೓

ுୀିே೓

ேೞ

ௌୀିேೞ

ൌ െ
1
2
〈൬
ܵ
ܪ
൰ ሺ ௛ܰ ൅ ,ሺܵݓሻܪ ;ܪ 	ܵ, ܪ െ 2ሻ〉௧ ,	

൬
ܵସሺݐሻ
ሻݐସሺܪ

൰ ൌ െ ෍ ෍ ൬
ܵ
ܪ
൰
ሺ ௛ܰ െ ሻܪ

2
,ሺܵݓ ;ܪ 	ܵ, ܪ ൅ 2ሻܲሺܵ, ,ܪ ሻݐ

ே೓

ுୀିே೓

ேೞ

ௌୀିேೞ

ൌ െ
1
2
〈൬
ܵ
ܪ
൰ ሺ ௛ܰ െ ,ሺܵݓሻܪ ;ܪ 	ܵ, ܪ ൅ 2ሻ〉௧,	
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൬
ܵହሺݐሻ
ሻݐହሺܪ

൰ ൌ ෍ ෍ ൬
ܵ
ܪ
൰
ሺ ௦ܰ ൅ ܵ ൅ 2ሻ

2
ሺܵݓ ൅ ;ܪ,2 	ܵ, ሻܲሺܵܪ ൅ ,ܪ,2 ሻݐ

ே೓

ுୀିே೓

ேೞ

ௌୀିேೞ

ൌ
1
2

෍ ෍ ቆ
ܵ/ െ 2
ܪ

ቇ ൫ ௦ܰ ൅ ܵ/൯ݓ൫ܵ/, /ܵ	;ܪ െ ,/൯ܲ൫ܵܪ,2 ,ܪ ൯ݐ

ே೓

ுୀିே೓

ேೞାଶ

ௌ/ୀିேೞାଶ		

ൌ
1
2

෍ ෍ ቆ
ܵ/ െ 2
ܪ

ቇ ൫ ௦ܰ ൅ ܵ/൯ݓ൫ܵ/, /ܵ	;ܪ െ ,/൯ܲ൫ܵܪ,2 ,ܪ ൯ݐ

ே೓

ுୀିே೓

ேೞ

ௌ/ୀିேೞ		

ൌ
1
2
〈൬
ܵ െ 2
ܪ

൰ ሺ ௦ܰ ൅ ܵሻݓሺܵ, ;ܪ 	ܵ െ 	.ሻ〉௧ܪ,2

To	 derive	 this	 last	 expression,	 we,	 having	 changed	 variables	ܵ/ ൌ ܵ ൅ 2,	 omitted	 the	 term	 with	

ܵ/ ൌ ௦ܰ ൅ 2	as	ܲሺ ௦ܰ ൅ ,ܪ,2 ሻݐ ≡ 0	and	 added	 the	 term	 with	ܵ/ ൌ െ ௦ܰ	as	 the	 summated	 function	

contains	 the	 multiplier	൫ ௦ܰ ൅ ܵ/൯	that	 vanishes	 at	 such	 value	 of	ܵ/,	 which	 has	 enabled	 us	 to	

represent	this	expression	in	canonical	form	above.	Similarly,		

൬
ܵ଺ሺݐሻ
ሻݐ଺ሺܪ

൰ ൌ ෍ ෍ ൬
ܵ
ܪ
൰
ሺ ௦ܰ െ ܵ ൅ 2ሻ

2
ሺܵݓ െ ;ܪ,2 	ܵ, ሻܲሺܵܪ െ ,ܪ,2 ሻݐ

ே೓

ுୀିே೓

ேೞ

ௌୀିேೞ

ൌ
1
2

෍ ෍ ቆ
ܵ/ ൅ 2
ܪ

ቇ ൫ ௦ܰ െ ܵ/൯ݓ൫ܵ/, /ܵ	;ܪ ൅ ,/൯ܲ൫ܵܪ,2 ,ܪ ൯ݐ

ே೓

ுୀିே೓

ேೞିଶ

ௌ/ୀିேೞିଶ		

ൌ
1
2

෍ ෍ ቆ
ܵ/ ൅ 2
ܪ

ቇ ൫ ௦ܰ െ ܵ/൯ݓ൫ܵ/, /ܵ	;ܪ ൅ ,/൯ܲ൫ܵܪ,2 ,ܪ ൯ݐ

ே೓

ுୀିே೓

ேೞ

ௌ/ୀିேೞ		

ൌ
1
2
〈൬
ܵ ൅ 2
ܪ

൰ ሺ ௦ܰ െ ܵሻݓሺܵ, ;ܪ 	ܵ ൅ 	,ሻ〉௧ܪ,2
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൬
ܵ଻ሺݐሻ
ሻݐ଻ሺܪ

൰ ൌ ෍ ෍ ൬
ܵ
ܪ
൰
ሺ ௛ܰ ൅ ܪ ൅ 2ሻ

2
,ሺܵݓ ܪ ൅ 2; 	ܵ, ,ሻܲሺܵܪ ܪ ൅ 2, ሻݐ

ே೓

ுୀିே೓

ேೞ

ௌୀିேೞ

ൌ
1
2

෍ ෍ ൬
ܵ

/ܪ െ 2
൰ ൫ ௛ܰ ൅ ,൫ܵݓ൯/ܪ ;/ܪ 	ܵ, /ܪ െ 2൯ܲ൫ܵ, ,/ܪ ൯ݐ

ே೓ାଶ

ு/ୀିே೓ାଶ

ேೞ

ௌୀିேೞ	

ൌ
1
2

෍ ෍ ൬
ܵ

/ܪ െ 2
൰ ൫ ௛ܰ ൅ ,൫ܵݓ൯/ܪ ;/ܪ 	ܵ, /ܪ െ 2൯ܲ൫ܵ, ,/ܪ ൯ݐ

ே೓

ு/ୀିே೓

ேೞ

ௌୀିேೞ	

ൌ
1
2
〈൬

ܵ
ܪ െ 2

൰ ሺ ௛ܰ ൅ ,ሺܵݓሻܪ ;ܪ 	ܵ, ܪ െ 2ሻ〉௧ ,	

൬
଼ܵሺݐሻ
ሻݐሺ଼ܪ

൰ ൌ ෍ ෍ ൬
ܵ
ܪ
൰
ሺ ௛ܰ െ ܪ ൅ 2ሻ

2
,ሺܵݓ ܪ െ 2; 	ܵ, ,ሻܲሺܵܪ ܪ െ 2, ሻݐ

ே೓

ுୀିே೓

ேೞ

ௌୀିேೞ

ൌ
1
2

෍ ෍ ൬
ܵ

/ܪ ൅ 2
൰ ൫ ௛ܰ െ ,൫ܵݓ൯/ܪ ;/ܪ 	ܵ, /ܪ ൅ 2൯ܲ൫ܵ, ,/ܪ ൯ݐ

ே೓ିଶ

ு/ୀିே೓ିଶ

ேೞ

ௌୀିேೞ	

ൌ
1
2

෍ ෍ ൬
ܵ

/ܪ ൅ 2
൰ ൫ ௛ܰ െ ,൫ܵݓ൯/ܪ ;/ܪ 	ܵ, /ܪ ൅ 2൯ܲ൫ܵ, ,/ܪ ൯ݐ

ே೓

ு/ୀିே೓

ேೞ

ௌୀିேೞ	

ൌ
1
2
〈൬

ܵ
ܪ ൅ 2

൰ ሺ ௛ܰ െ ,ሺܵݓሻܪ ;ܪ 	ܵ, ܪ ൅ 2ሻ〉௧.	

We	can	now	sum	the	above	expressions	to	obtain	the	following	equations	for	ܵሺݐሻ	and	ܪሺݐሻ:	

൞

݀ܵሺݐሻ

ݐ݀
ൌ ,௦ሺܵܨ〉 ,ሻ〉௧ܪ

ሻݐሺܪ݀

ݐ݀
ൌ ,௛ሺܵܨ〉 ,ሻ〉௧ܪ

																																																																																																																																												ሺ11ܣሻ	

where	

,௦ሺܵܨ ሻܪ ൌ െሺ ௦ܰ ൅ ܵሻݓሺܵ, ;ܪ 	ܵ െ ሻܪ,2 ൅ ሺ ௦ܰ െ ܵሻݓሺܵ, ;ܪ 	ܵ ൅ 	,ሻܪ,2

,௛ሺܵܨ ሻܪ ൌ െሺ ௛ܰ ൅ ,ሺܵݓሻܪ ;ܪ 	ܵ, ܪ െ 2ሻ ൅ ሺ ௛ܰ െ ,ሺܵݓሻܪ ;ܪ 	ܵ, ܪ ൅ 2ሻ.	
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We	note	that	system	ሺ11ܣሻ	is	not	closed	because	〈ܨ௦ሺܵ, ,௛ሺܵܨ〉	and	ሻ〉௧ܪ 	be	general	in	cannot	ሻ〉௧ܪ

reduced	 to	be	 functions	of	 	ܵሺݐሻ	and	ܪሺݐሻ.	However,	 it	would	be	 reasonable	 to	assume	 that	 in	 the	

thermodynamic	 limit	 ( ௦ܰ ≫ 1	, ௛ܰ ≫ 1 )	 fluctuations	 of	 total	 spins	 ܵ	and	ܪ 	around	 their	

instantaneous	 average	 values	ܵሺݐሻ	and	ܪሺݐሻ	are	 small	 in	 comparison	 with	 these	 same	 average	

values.	This	situation	is	analogous	to	that	where	a	system	is	in	thermodynamic	equilibrium.	We	can	

then	write	

,௦ሺܵܨ〉 ሻ〉௧ܪ ൌ ,௦ሺ〈ܵ〉௧ܨ ௧ሻ〈ܪ〉 ൌ ,ሻݐ௦ሺܵሺܨ 		ሻሻݐሺܪ

and	

,௛ሺܵܨ〉 ሻ〉௧ܪ ൌ ,௛ሺ〈ܵ〉௧ܨ ௧ሻ〈ܪ〉 ൌ ,ሻݐ௛൫ܵሺܨ 		.ሻ൯ݐሺܪ

We	introduce	new	variables,	

ሻݐሺݏ ൌ
〈ܵ〉௧

௦ܰ
ൌ
ܵሺݐሻ

௦ܰ
	,	

݄ሺݐሻ ൌ
௧〈ܪ〉

௛ܰ
ൌ
ሻݐሺܪ

௛ܰ
	,	

and	express	ܨ௦ሺܵሺݐሻ, ,ሻݐ௛൫ܵሺܨ	and	ሻሻݐሺܪ 	limit	the	in	obtain	to	variables	these	via	ሻ൯ݐሺܪ ௦ܰ → ∞, ௛ܰ →

∞	the	following	equations:	

,ሻݐ௦൫ܵሺܨ ሻ൯ݐሺܪ ൌ ௦ܰ ቈെ൫1 ൅ ሻ൯ݐሺݏ
௦ݓ

1 ൅ exp൛2ߚ൫ܬଵଵݏሺݐሻ ൅ ሻݐଵଶ݄ሺܬ ൅ ሻ൯ൟݐ௦ܾ௦ሺߤ

൅ ൫1 െ ሻ൯ݐሺݏ
௦ݓ

1 ൅ exp൛െ2ߚ൫ܬଵଵݏሺݐሻ ൅ ሻݐଵଶ݄ሺܬ ൅ ሻ൯ൟݐ௦ܾ௦ሺߤ
቉

ൌ ௦ܰݓ௦ൣtanh൛ߚ൫ܬଵଵݏሺݐሻ ൅ ሻݐଵଶ݄ሺܬ ൅ ሻ൯ൟݐ௦ܾ௦ሺߤ െ 	ሻ൧ݐሺݏ

and	
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,ሻݐ௛൫ܵሺܨ ሻ൯ݐሺܪ ൌ ௛ܰ ቈെ൫1 ൅ ݄ሺݐሻ൯
௛ݓ

1 ൅ exp൛2ߚ൫ܬଶଶ݄ሺݐሻ ൅ ሻݐሺݏଶଵܬ ൅ ሻ൯ൟݐ௛ܾ௛ሺߤ

൅ ൫1 െ ݄ሺݐሻ൯
௛ݓ

1 ൅ exp൛െ2ߚ൫ܬଶଶ݄ሺݐሻ ൅ ሻݐሺݏଶଵܬ ൅ ሻ൯ൟݐ௛ܾ௛ሺߤ
቉

ൌ ௛ܰݓ௛ൣtanh൛ߚ൫ܬଶଶ݄ሺݐሻ ൅ ሻݐሺݏଶଵܬ ൅ ሻ൯ൟݐ௛ܾ௛ሺߤ െ ݄ሺݐሻ൧.	

Substituting	 these	expressions	 into	ሺ11ܣሻ,	we	obtain	 the	 following	 closed	system	of	equations	 for	

	:ሻݐ݄ሺ	and	ሻݐሺݏ

൞

ሻݐሺݏ݀

ݐ݀
ൌ ሻݐሺݏଵଵܬ൫ߚ௦ൣtanh൛ݓ ൅ ሻݐଵଶ݄ሺܬ ൅ ሻ൯ൟݐ௦ܾ௦ሺߤ െ ,ሻ൧ݐሺݏ

݄݀ሺݐሻ

ݐ݀
ൌ ሻݐଶଶ݄ሺܬ൫ߚ௛ൣtanh൛ݓ ൅ ሻݐሺݏଶଵܬ ൅ ሻ൯ൟݐ௛ܾ௛ሺߤ െ ݄ሺݐሻ൧.

																																																																			ሺ12ܣሻ	

The	 following	 condition	 determine	 the	 stationary	 points	 of	ሺ12ܣሻ 	forܾ௦ሺݐሻ ൌ ܾ௦ ൌ const ,	

	ܾ௛ሺݐሻ ൌ ܾ௛ ൌ const:	

ቊ
ݏ ൌ tanh൫ߚሺܬଵଵݏ ൅ ଵଶ݄ܬ ൅ ,௦ܾ௦ሻ൯ߤ

݄ ൌ tanh൫ߚሺܬଶଶ݄ ൅ ݏଶଵܬ ൅ ,௛ܾ௛ሻ൯ߤ
																																																																																																																			ሺ13ܣሻ	

which	 coincides	with	 condition	ሺ4ܣሻ	that	 determines	 the	 extrema	 of	 the	 equilibrium	 distribution	

function	 ଴ܲሺݏ, ݄ሻ.		

Reverting	to	notation	ߠ ൌ 		as	12ሻܣሺ	express	we	,ߚ/1

ሶݏ ൌ െݓ௦ݏ ൅ ௦tanhݓ ቆ
ݏଵଵܬ ൅ ଵଶ݄ܬ ൅ ሻݐ௦ܾ௦ሺߤ

ߠ
ቇ,																																																																																													ሺ14ܽܣሻ	

ሶ݄ ൌ െݓ௛݄ ൅ ௛ݓ tanh ቆ
ݏଶଵܬ ൅ ଶଶ݄ܬ ൅ ሻݐ௛ܾ௛ሺߤ

ߠ
ቇ.																																																																																										ሺ14ܾܣሻ	

	

	



Page	77	of	97	

 

A4.	Dynamic	equation	in	the	one‐component	Ising	system	

Finally,	 we	 consider	 a	 simpler	 Ising	 system	 that	 consists	 of	ܰ	spins	ݏ௜ ൌ േ1, ݅ ൌ 1…ܰ	and	 the	

external	magnetic	field	ܪሺݐሻ.	The	Hamiltonian	of	this	system	is	equal	to		

࣢ ൌ െ
଴ܬ
2
෍ݏ௜ݏ௞ െ 15ሻܣሺ																																																																																																																								௜.ݏሻ෍ݐሺܪߤ

ே

௜

ே

௜ஷ௞

	

As	the	Hamiltonian	ሺ15ܣሻ	is	a	particular	case	of	the	Hamiltonian	ሺ1ܣሻ,	equations	ሺ14ܣሻ	contain	

the	 dynamic	 equation	 for	 average	 spin	 in	 the	 one‐component	 system:	ݏሺݐሻ ൌ
〈ௌ〉೟
ே
ൌ

ௌሺ௧ሻ

ே
.	 This	

equation	can	be	derived	from	ሺ14ܽܣሻ	by	setting	ܬଵଶ ൌ 0	and	renaming	ߤ௦ ൌ ሻݐܾ௦ሺ	and	ߤ ൌ 	:ሻݐሺܪ

ሶݏ ൌ െݓ௦ݏ ൅ ௦ݓ tanh ቆ
ݏܬ ൅ ሻݐሺܪߤ

ߠ
ቇ	, 																																																																																																																	ሺ16ܣሻ	

where	limே→ஶሺܬ଴ܰሻ ൌ 	.ܬ

Appendix	B:	The	reference	sentiment	level	

Here	we	 derive	 an	 approximate	 expression	 of	 the	 reference	 sentiment	 level	ݏ∗,	 relative	 to	which	

deviations	 in	 sentiment	 result	 in	 a	 change	 of	 market	 price,	 as	 described	 by	 the	 second	 term	 in	

equation	(10).			

B1.	Equation	for	ܛ∗	

As	a	 first	step,	we	take	a	 long‐term	average	of	both	sides	of	equation	(10)	with	respect	to	time	to	

obtain	its	asymptotic	form	in	which	the	averaged	variables	are	time‐independent:	

ሶ݌ ̅ ൌ ܽଵݏሶ̅ ൅ ܽଶሺ̅ݏ െ 	1ሻܤሺ																																																																																																																																															ሻ,∗ݏ

where	݌ሶ̅	denotes	the	constant	rate	of	change	in	market	price	and	ݏሶ ̅ ൌ 0	because	ݏ	is	bounded.	Thus,	

we	can	rewrite	equation	(B1)	as	
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ሶ̅݌ ൌ ܽଶሺ̅ݏ െ 	2ሻܤሺ																																																																																																																																																											ሻ,∗ݏ

where	̅ݏ	satisfies	the	similarly	averaged	equation	(4)	(with	ݏሶ ̅ ൌ 0):	

ݏ̅ ൌ tanh൫ߚଵݏ ൅ ሻ൯ݐሺܪଶߚ
തതതതതതതതതതതതതതതതതതതതതതതതതത	.																																																																																																																																							ሺ3ܤሻ	

Now,	let	us	consider	a	situation	where	the	flow	of	direct	information	ܪሺݐሻ	is	on	average	neutral,	

i.e.	ܪሺݐሻതതതതതത ൌ 0.	Since	according	 to	our	market	model,	 it	 is	 the	 flow	of	direct	 information	 that	drives	

market	price	development,	the	case	of	ܪഥ ൌ 0	implies	that	the	rate	of	change	in	price	is	on	average	

zero,	i.e.	݌ሶ ̅ ൌ 0,	and	thus	equation	(B2)	becomes	

∗ݏ ൌ 	4ሻܤሺ																																																																																																																																																																												.ݏ̅

Therefore	ݏ∗	equals	̅ݏ	in	the	regime	where	the	direct	information	flow	is	on	average	zero,	which	

is	 the	 regime	 described	 by	 the	 potential	ܷሺݏሻ	for	 which	ܿ ൌ ഥܪଶߚ ൌ 0	(eq.	 6).	37		 There	 is	 but	 one	

caveat	to	this	derivation.	Namely	that	because	we	have	used	equation	(10)	which	–	being	a	 linear	

combination	of	two	asymptotic	regimes	of	the	actual	equation	governing	price	evolution	(the	true	

form	of	which	we	do	not	know)	–	is	an	approximation,	the	above	relation	between	ݏ∗	and	̅ݏ	may	not	

be	the	true	relation.	However,	we	expect	that	this	relation	holds	approximately,	as	it	leads	to	results	

that	are	consistent	with	observations,	as	is	shown	in	Section	1.3.2.				

We	can	obtain	 an	approximate	 solution	 for	̅ݏ	from	equation	 (B3)	by	expanding	 the	hyperbolic	

tangent	in	powers	of	ߚଵݏ ൅ ݏଵߚ	of	neighborhood	the	in	ܪଶߚ ൅ ܪଶߚ ൌ ݏଵߚ ൅ തതതതതതതതതതതതതܪଶߚ ൌ 	averaging	and	ݏଵ̅ߚ

the	resulting	series	truncated	above	the	quadratic	terms.	Equation	(B3)	then	takes	the	approximate	

form:			

                                                            

37	In	 the	ferromagnetic	case	(ߚଵ ൐ 	non‐symmetric	given	nonzero,	be	can	ݏ̅	,(1 initial	conditions	

ሺ0ሻݏ) ് 0),	finite	averaging	period	and	sufficiently	small	ߪு.	
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ݏ̅ ൌ tanhሺߚଵ̅ݏሻ ൫1 ൅ ሻݏଵ̅ߚଶሺtanhଶሺߪ െ 1ሻ൯,																																																																																																									ሺ5ܤሻ	

where	ߪ ൌ ݏଵߚ	of	deviation	standard	the	is	ఉభ௦ାఉమுߪ ൅ 	1.1)	(Section	ሻݐሺܪ	series	time	the	Using	.ܪଶߚ

and	ݏሺݐሻ	(Section	 1.2.3),	we	 estimate	0.5~ߪ,	 so	ߚଵݏሺݐሻ ൅ 	can	ሻݐሺܪଶߚ be	 seen	 to	 remain	 reasonably	

close	to	the	center	of	expansion	ߚଵ̅ݏ,	which	justifies	the	above	approximation	for	the	relevant	range	

of	parameter	values.		

Equation	(B5)	is	applied	to	determine	ߚଵ	from	ݏ∗	in	the	iterative	least	squares	fitting	process	for	

the	time	series	݌ሺݐሻ	in	Section	1.3.2.	For	this	purpose,	we	apply	ߪ ൌ 0.3	instead	of	0.5.	This	choice	is	

dictated	 by	 the	 following	 considerations.	 Unlike	 the	 empirical	model	 (Section	 1),	 the	 behavior	 of	

which	is	driven	primarily	by	the	measured	ܪሺݐሻ,	the	theoretical	model	(Section	2)	is	sensitive	to	ߚଵ.	

It	would	therefore	be	sensible	to	select	ߚଵ	based	on	the	theoretical	model	behavior.	The	estimate	of	

0.3	results	 in	 a	 more	 realistic	 behavior	 of	 the	 theoretical	 model	 than	0.5	which	 leads	 to	 higher	

values	of	ߚଵ	than	those	following	from	the	theoretical	model.	The	choice	of	0.3	instead	of	0.5	seems	

acceptable,	 given	 the	 approximate	 nature	 of	 equation	 (B5)	 and	 the	 inevitable	 imprecision	 in	

measuring	and	calibrating	ܪሺݐሻ.		

B2.	Perturbative	solution	for	ܛ∗	

Treating	ߪଶ	as	a	small	parameter	(as	follows	from	the	estimates	 in	the	preceding	section,	ߪଶ~0.25	

or	0.09),	we	can	construct	a	perturbative	solution	to	equation	(B5).	We	find	that	in	the	leading	order	

the	solution	is			

ݏ̅ ൌ tanhሺߚଵ̅ݏሻ,																																																																																																																																																											ሺ6ܤሻ	

i.e.	it	coincides	with	the	stable	equilibrium	points	of	system	(4).	Consequently,	ݏ∗	becomes	

∗ݏ ൌ ݏ̅ ൌ ଵߚ	for		േݏ ൐ 1,																																																																																																																																									ሺ7ܽܤሻ	

∗ݏ ൌ ݏ̅ ൌ 0		for	ߚଵ ൑ 1.																																																																																																																																											ሺ7ܾܤሻ	
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Figure	B1:	Graphic	representation	of	the	reference	level	ݏ∗	for	ߚଵ ൌ 1.1	and	ߪ ൌ ାݏ	:0.3 ൌ 0.503	(eq.	

B6)	and	ݏ∗ ൌ 0.313	(eq.	B8a).	

Appendix	C:	Analysis	of	dynamical	system	

Here	 we	 investigate	 certain	 properties	 of	 the	 system	 of	 equations	 (13).	 As	 equation	 (13a)	 is	

decoupled	from	(13b,c),	the	study	of	system	(13)	is	reduced	to	the	analysis	of	the	two‐dimensional	

nonlinear	dynamical	system	(13b,c),	the	solutions	to	which	must	be	substituted	into	(13a)	to	solve	

system	(13)	completely.		

C1.	Equilibrium	points	

If	we	 consider	a	 situation	where	 the	 time‐dependent	 force	ߦߢሺݐሻ	is	 absent,	 equations	 (13b,c)	 take	

the	form:	

ሶݏ ൌ െݓ௦ݏ ൅ ݏଵߚ௦tanhሺݓ ൅ 	1ܽሻܥሺ																																																																																																																							,	ଶ݄ሻߚ

ሶ݄ ൌ െݓ௛݄ ൅ ௛ݓ tanhሺݏߛሶ ൅ 	1ܾሻܥ	ሺ																																																																																																																										,	ሻߜ

where	 (as	 a	 reminder)	|ݏ| ൑ 1, |݄| ൑ 1	and	 the	 coefficients	ߚଵ,	ߚଶ,	,ߛ	,ߜ	ݓ௦	and	ݓ௛	are	 non‐negative	

constants.	 Solutions	 to	 equations	 (C1)	ݏሺݐሻ,	݄ሺݐሻ	for	 the	 initial	 conditions	ݏሺ0ሻ,	݄ሺ0ሻ	determine	

trajectories	of	motion	corresponding	to	the	velocity	field	(ݏሶ , ሶ݄ )	given	by	the	r.h.s.	of	(C1).	The	motion	

is	bounded	because	the	velocity	at	the	boundaries	ݏ ൌ േ1	and	݄ ൌ േ1	is	directed	into	the	region	of	

motion.	

The	equilibrium	points	of	system	(C1)	(where	ݏሶ ൌ ሶ݄ ൌ 0)	are	given	by	

∗ݏ ൌ tanhሺߚଵݏ∗ ൅ 	2ܽሻܥሺ																																																																																																																																							,	ଶ݄∗ሻߚ

݄∗ ൌ tanh ߜ 	.																																																																																																																																																													ሺ2ܾܥሻ	
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solution	ݏ଴	is	 negative	 for	 nonzero	ߜ	and	 approaches	 zero	 as	ߜ → 0.	 The	 existence	 of	 nonzero	

solutions	 in	 the	 limit	ߜ → 0	means	that	 the	system	may	have	ordered	(ferromagnetic)	equilibrium	

states.			

	When	ߜ ൒ 	at	vanish	and	merge	solutions	other	two	as	ା,ݏ	solution	single	a	has	(C3)	equation	௖,ߜ

ߜ ൌ ߜ	at	bifurcation	the	to	sensitive	not	ାisݏ	that	note	We	௖.ߜ ൌ 	derivatives	its	and	ሻߜାሺݏ	,is	that	௖,ߜ

do	not	have	a	singularity	at	this	point.	It	is	not	difficult	to	find	݄௖ ൌ tanh 	Figure	from	follows	As	௖.ߜ

C1b,	݄௖	is	determined	by	the	value	of	݂ሺߚଵ, 	the	From	.∗ݏ	to	respect	with	maximum	its	at	C3)	(eq.	ሻ∗ݏ

extremum	condition,	
డ௙ሺఉభ,௦∗ሻ

డ௦∗
ൌ 0,	it	follows	that		

୶୲୰ୣݏ
∗ ൌ െඨ

ଵߚ െ 1
ଵߚ

		,																																																																																																																																																			ሺ4ܥሻ	

where	 the	 solution	 corresponding	 to	 the	 maximum	 of	݂ሺߚଵ, 	has	ሻ∗ݏ been	 selected.	 Substituting	

∗ݏ ൌ ୶୲୰ୣݏ
∗ 	into	(C3),	we	obtain	

݄௖ ൌ tanh ௖ߜ ൌ
1
ଶߚ
݂ ቌߚଵ,െඨ

ଵߚ െ 1
ଵߚ

ቍ ൌ
1
ଶߚ
ۉ

1ۇ
2
ln

ۉ

ۇ
1 െ ටߚଵ െ 1

ଵߚ

1 ൅ ටߚଵ െ 1
ଵߚ ی

ۊ ൅ඥߚଵሺߚଵ െ 1ሻ

ی

	5ሻܥሺ																										.	ۊ

When	 the	 system	 is	 in	 the	vicinity	of	 the	phase	 transition	at	ߚଵ ൌ 1	from	 ferromagnetic	 state	 into	

paramagnetic	state,	then	0 ൏ ଵߚ െ 1 ≪ 1,	so	the	above	expression	for	݄௖	becomes	

݄௖~ቌ
2

ଵߚଶߚ3
ଷ
ଶ

ቍ ሺߚଵ െ 1ሻ
ଷ
ଶ		.																																																																						

To	 sum	 up,	 system	 (C1)	 admits	 two	 types	 of	 bifurcations	 with	 respect	 to	 the	 number	 of	

equilibrium	points.	First,	there	is	a	phase	transition	at	ߚଵ ൌ 1	between	the	disordered,	paramagnetic	

state	 with	 one	 equilibrium	 point	 ଵߚ) ൏ 1)	 and	 the	 ordered,	 ferromagnetic	 state	 with	 three	
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equilibrium	points	(ߚଵ ൐ 1).	Second,	when	the	system	is	in	the	ferromagnetic	state,	two	equilibrium	

points	merge	and	vanish	at	ߜ ൌ ߜ	for	remains	point	equilibrium	one	only	that	so	௖,ߜ ൐ 			.௖ߜ

C2.	Stability	analysis	

We	proceed	 to	 study	 the	 stability	 of	 system	 (C1)	 near	 the	 equilibrium	points.	 It	 is	 convenient	 to	

rescale	time	as	߬ ൌ ߱௦ݐ	and	rewrite	equations	(C1a)	and	(C1b)	as		

ሶݏ ≡ ,ݏሺݑ ݄ሻ ൌ െݏ ൅ tanhሺߚଵݏ ൅ 	6ܽሻܥሺ																																																																																																															ଶ݄ሻ,ߚ

ሶ݄ ≡ ,ݏሺݒ ݄ሻ ൌ െ݄ߟ ൅ ߟ tanhሺ̅ݏߛሶ ൅ 	6ܾሻܥሺ																																																																																																															ሻ,ߜ

where	ߟ ൌ
௪೓

௪ೞ
	and	̅ߛ ൌ 		.ߛ௦ݓ

Linearization	 of	 system	 (C6)	 in	 the	 neighborhood	 of	 the	 equilibrium	 points	 	(∗݄	,∗ݏ) leads	 to	

solutions	 ሺ߬ሻݏ 	and	 ݄ሺ߬ሻ 	in	 the	 form	 of	 linear	 combinations	 of	 exp	ሺ߬ିߣሻ 	and	 exp	ሺߣା߬ሻ 	with	

eigenvalues	ߣേ	given	by		

േߣ ൌ
1
2
ቀtrሺࡶሻ േ ඥtrଶሺࡶሻ െ 4detሺࡶሻ		ቁ	,																																																																					

where	Jacobian	ࡶ,	trace	trሺࡶሻ	and	determinant	detሺࡶሻ	are	defined	as	

,∗ݏሺࡶ ݄∗ሻ ൌ ൮

ݑ߲
ݏ߲

ݑ߲
߲݄

ݒ߲
ݏ߲

ݒ߲
߲݄

൲

ቚೞసೞ
∗

೓స೓∗

,				trሺࡶሻ ൌ
ݑ߲
ݏ߲

൅
ݒ߲
߲݄

,				detሺࡶሻ ൌ
ݑ߲
ݏ߲

ݒ߲
߲݄

െ
ݑ߲
߲݄

ݒ߲
ݏ߲
		.																										

Substituting	ݑሺݏ, ݄ሻ	and	ݒሺݏ, ݄ሻ	from	(C6)	into	the	expressions	for	ࡶ,	trሺࡶሻ	and	detሺࡶሻ,	we	obtain		

ࡶ ൌ ቌ
െ߰

1
߯
ሺ߮ ൅ ሻߟ

െ߯߰ ߮
ቍ ,			trሺࡶሻ ൌ ߮ െ ߰,			detሺࡶሻ ൌ 																																																							,ߟ߰

where			
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߰ ൌ 1 െ ଵ൫1ߚ െ 																																																																																																										,	ଶ൯∗ݏ

߯ ൌ ߛ̅ߟ sechଶ ߜ ൌ ߛ௛ݓ sechଶ 																																																																									,	ߜ

߮ ൌ ߛ̅ߟଶߚ ൫1 െ ଶ൯sechଶ∗ݏ ߜ െ ߟ ൌ ߛ௛ݓଶߚ ൫1 െ ଶ൯sechଶ∗ݏ ߜ െ
௛ݓ
௦ݓ
	.																																	

As	a	result,	the	characteristic	equation	for	eigenvalues	ߣേ	becomes	

േߣ ൌ
1
2
ቀ߮ െ ߰ േ ඥሺ߮ െ ߰ሻଶ െ 	7ሻܥሺ																																																																																																															.	ቁ		ߟ4߰

If	 the	discriminant	ܦ ൌ ሺ߮ െ ߰ሻଶ െ 	,non‐negative	is	ߟ4߰ then	ߣേ	are	real.	The	eigenvalues	may	

have	 the	 same	or	opposite	 signs.	 In	 the	 former	case	 the	equilibrium	point	 is	 called	a	node,	 in	 the	

latter	case	the	equilibrium	point	is	called	a	saddle.	If	at	least	one	of	the	eigenvalues	is	positive,	the	

equilibrium	 is	 unstable	 because	 there	 is	 an	 exponentially	 growing	 solution	 to	 (C6)	 near	 the	

equilibrium	 point.	 If	ܦ	is	 negative,	 then	ߣേ	are	 complex	 conjugates,	 so	 that	 there	 is	 an	 oscillatory	

component	to	the	motion	in	the	vicinity	of	the	equilibrium	point,	which	is	called	a	focus,	provided	

the	eigenvalues	have	nonzero	real	parts.	In	this	situation,	the	sign	of	the	real	part	of	the	eigenvalues	

determines	stability	at	the	equilibrium.	Note	that	the	eigenvalues	are	dependent	on	the	position	of	

the	 equilibrium	 point	ݏ∗.	 Therefore,	 we	 can	 expect	 that	 each	 of	 the	 three	 equilibrium	 points	 in	

ferromagnetic	state	has	unique	stability	properties.		

Let	us	consider	the	characteristic	equation	(C7)	in	detail.	

1. If	 the	 second	 term	 in	ܦ	is	 negative,	 then	ିߣ ൏ 0	and	ߣା ൐ 0,	 so	 that	 the	 equilibrium	point	 is	 a	

(unstable)	saddle.	This	condition	is	fulfilled	when	ߚଵ൫1 െ ଶ൯∗ݏ ൐ 1.	

2. If	ߚଵ൫1 െ ଶ൯∗ݏ ൏ 1,	i.e.	the	second	term	in	ܦ	is	positive,	then	the	equilibrium	is	stable	(unstable)	

provided	ሺφ െ ψሻ	is	negative	(positive).	This	condition	can	be	written	as		



Page	86	of	97	

 

ߛ ≶
1 ൅

௦ݓ
௛ݓ

ቀ1 െ ଵ൫1ߚ െ ଶ൯ቁ∗ݏ

ଶߚ௦ݓ ൫1 െ ଶ൯sechଶ∗ݏ ߜ
.																																																																																																																						ሺ8ܥሻ	

These	 inequalities	determine	the	values	of	parameters	for	which	the	equilibrium	is	stable	(the	

sign	൏	above)	or	unstable	(the	sign	൐	above).		

If	simultaneously	with	(C8)	ሺ߮ െ ߰ሻଶ ൐ 	and	real	are	eigenvalues	the	positive,	is	ܦ	then	,ߟ4߰

of	the	same	sign,	so	that	the	equilibrium	point	is	a	stable	(ሺ߮ െ ߰ሻ ൏ 0)	or	unstable	(ሺ߮ െ ߰ሻ ൐

0)	node.	It	is	not	difficult	to	show	that	the	corresponding	ranges	of	parameter	values	are	defined	

by	

ߛ ൏
൬1 െ ට

௦ݓ
௛ݓ

ቀ1 െ ଵ൫1ߚ െ ଶ൯ቁ൰∗ݏ
ଶ

ଶߚ௦ݓ ൫1 െ ଶ൯sechଶ∗ݏ ߜ
																																																																																																													ሺ9ܥሻ	

for	the	stable	node	and	by	

ߛ ൐
൬1 ൅ ට

௦ݓ
௛ݓ

ቀ1 െ ଵ൫1ߚ െ ଶ൯ቁ൰∗ݏ
ଶ

ଶߚ௦ݓ ൫1 െ ଶ൯sechଶ∗ݏ ߜ
																																																																																																										ሺ10ܥሻ	

for	the	unstable	node.		

On	 the	 other	 hand,	 if	 simultaneously	 with	 (C8)	ሺ߮ െ ߰ሻଶ ൏ 	,ߟ4߰ then	ܦ	is	 negative,	 the	

eigenvalues	are	complex	conjugates,	so	 that	 the	equilibrium	point	 is	a	stable	(ሺ߮ െ ߰ሻ ൏ 0)	or	

unstable	(ሺ߮ െ ߰ሻ ൐ 0)	focus.	The	corresponding	ranges	of	parameter	values	are	determined	by		

൬1 െ ට
௦ݓ
௛ݓ

ቀ1 െ ଵ൫1ߚ െ ଶ൯ቁ൰∗ݏ
ଶ

ଶߚ௦ݓ ൫1 െ ଶ൯sechଶ∗ݏ ߜ
൏ ߛ ൏

1 ൅
௦ݓ
௛ݓ

ቀ1 െ ଵ൫1ߚ െ ଶ൯ቁ∗ݏ

ଶߚ௦ݓ ൫1 െ ଶ൯sechଶ∗ݏ ߜ
																																																			ሺ11ܥሻ	

for	the	stable	focus	and	



Page	87	of	97	

 

1 ൅
௦ݓ
௛ݓ

ቀ1 െ ଵ൫1ߚ െ ଶ൯ቁ∗ݏ

ଶߚ௦ݓ ൫1 െ ଶ൯sechଶ∗ݏ ߜ
൏ ߛ ൏

൬1 ൅ ට
௦ݓ
௛ݓ

ቀ1 െ ଵ൫1ߚ െ ଶ൯ቁ൰∗ݏ
ଶ

ଶߚ௦ݓ ൫1 െ ଶ൯sechଶ∗ݏ ߜ
																																																			ሺ12ܥሻ	

for	the	unstable	focus.		

It	follows	from	(C9‐12)	that	the	following	sequence	of	bifurcations	always	takes	place	when	

	.node	unstable	‐>	focus	unstable	focus‐>	stable	‐>	node	stable	infinity:	to	zero	from	increases	ߛ

Also,	 equations	 (C9)	 and	 (C10)	 show	 that	 the	 range	 of	 parameter	 values	 for	 the	 focus‐type	

equilibrium	 points	 diminishes	 with	 the	 decreasing	 ratio	ݓ௦ ௛ൗݓ 	and	 vanishes	 in	 the	 limit	

௦ݓ ௛ൗݓ → 0.		

3. In	 the	 paramagnetic	 phase	 ଵߚ) ൏ 1),	 the	 condition	ߚଵ൫1 െ ଶ൯∗ݏ ൏ 1	is	 satisfied	 for	 any	ݏ∗,	

therefore	 the	 analysis	 in	 the	 paragraph	 2	 above	 applies.	 It	 means	 that	 the	 equilibrium	 point	

ሺݏ∗, ݄∗ሻ ൌ ሺ̃ݏ଴, tanh 	goes	ሻߜ through	 the	 above‐described	 series	 of	 bifurcations:	 stable	 node	 ‐>	

stable	focus‐>	unstable	focus	‐>	unstable	node.	

4. In	the	ferromagnetic	phase	(ߚଵ ൐ 1),	the	system	may	have	either	(i)	three	equilibrium	points	at	

∗ݏ ൌ ,ିݏ ,଴ݏ ାݏ 	and	 ݄∗ ൌ tanh ߜ 	or	 (ii)	 one	 equilibrium	 point	 at	 ∗ݏ ൌ ାݏ 	and	 ݄∗ ൌ tanh ߜ ,	

depending	 on	 whether	ߜ ൏ ߜ	or	௖ߜ ൒ 	.(eq	௖ߜ C5),	 respectively.	 As	 follows	 from	 Figure	 C1b,	

|଴ݏ| ൏ ୶୲୰ୣݏ|
∗ |.	Substituting	ୣݏ୶୲୰

∗ 	given	by	equation	C4,	we	obtain	that	the	condition	ߚଵ൫1 െ ଶ൯∗ݏ ൐

1	is	 satisfied	 for	 any	ݏ଴.	 Conversely,	หݏേห ൐ ୶୲୰ୣݏ|
∗ |,	 therefore	 the	 condition	ߚଵ൫1 െ ଶ൯∗ݏ ൏ 1	is	

satisfied	for	any	ିݏ	and	ݏା.	Thus,	the	equilibrium	point	corresponding	to	ݏ଴	is	always	a	saddle	in	

accordance	with	paragraph	1,	whereas	the	equilibrium	points	corresponding	to	ݏേ	are	subject	to	

the	 sequence	 of	 bifurcations	 stable	 node	 ‐>	 stable	 focus‐>	unstable	 focus	 ‐>	 unstable	 node	 in	

accordance	with	paragraph	2.	

It	 is	 not	 difficult	 to	 show	 that	 in	 the	 ferromagnetic	 case	 with	 three	 equilibrium	 points	

ߜ) ൏ 	,(௖ߜ each	 bifurcation	 from	 the	 sequence	 stable	 focus‐>	 unstable	 focus	 ‐>	 unstable	 node	
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C3.	Interpretation	as	an	oscillator	

Equation	(C6a)	can	be	differentiated	with	respect	to	time38	and,	using	equation	(C6b),	expressed	as	

ሷݏ ൌ ,ݏሺߔ ሶሻݏ ൌ െݏሶ ൅ ሺ1 െ ሺݏ ൅ ሶݏଵߚሶሻଶሻሺݏ ൅ ߟଶߚ tanhሺ̅ݏߛሶ ൅ ሻߜ ൅ ݏߟଵߚ െ ߟ arctanhሺݏ ൅ 	13ሻܥሺ															ሶሻሻ.ݏ

This	 equation	 can	 be	 interpreted	 as	 an	 equation	 of	 motion	 for	 a	 particle	 of	 unit	 mass	 with	 the	

coordinate	ݏ	and	 the	 velocity	ݏሶ ,	 the	 motion	 of	 which	 is	 driven	 by	 the	 applied	 force	ߔሺݏ, 	.ሶሻݏ It	 is	

instructive	 to	 expand	ߔሺݏ, 	into	ሶሻݏ a	 Taylor	 series	 and	 write	 equation	 (C13)	 in	 the	 following	

approximate	form:	

ሷݏ ൅ ,ݏሺܩ ሶݏሶሻݏ ൅
ܷ݀ሺݏሻ
ݏ݀

ൌ 0	,																																																																																																																																				ሺ14ܥሻ	

where	ܩ	has	the	meaning	of	a	damping	coefficient	and	is	equal	to	

,ݏሺܩ ሶሻݏ ൌ ሻݏሺܩ ൌ ሺ1 െ ଵߚ െ ߛ̅ߟଶߚ ൅ ሻߟ ൅ ݏߜߟଶߚ2 ൅ ሺߚଵ ൅ ߛ̅ߟଶߚ ൅ ߟଵߚ2 െ 	15ሻܥሺ																															ଶݏሻߟ2

and	the	potential	ܷ	is	given	by	

ܷሺݏሻ ൌ െߟ ቌ
ଵߚ െ 1
2

ଶݏ െ
ଵߚ െ

2
3

4
ସݏ ൅ 	16ሻܥሺ																																																																																																.	ቍݏߜଶߚ

To	obtain	equations	(C15)	and	(C16),	the	Taylor	series	of	ߔሺݏ, 	terms	at	truncated	been	have	ሶሻݏ

above	cubic	in	ݏ,	linear	in	ݏሶ	and	linear	in	ߜ,	so	that,	strictly	speaking,	this	approximation	is	only	valid	

in	the	region	where	|ݏ| ≪ 1	and	|ݏሶ| ≪ 1,	which	defines	the	neighborhood	of	the	equilibrium	point	at	

∗ݏ ൌ ∗ݏ	(and	଴ݏ ൌ 	(଴ݏ̃ for	small	39.ߜ	However,	 the	expression	for	 the	potential	ܷሺݏሻ,	which	does	not	

                                                            

38	݀/݀߬	where	߬ ൌ ߱௦ݐ.	

39	Recall	that	both	ݏ	and	ݏሶ	are	bounded:		|ݏ| ൑ 1	and	|ݏ ൅ |ሶݏ ൑ 1,	as	follows	from	equation	(C6a).	
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contain	the	more	heavily	truncated	terms	~ݏሶ,	is	expected	to	hold	reasonably	well	also	outside	that	

region	for	the	relevant	range	of	parameter	values,	namely	ሺߚଵ, ,ଶߚ ߜ	and	ሻ~1ߛ̅ ≪ 1.	

Equation	 (C14)	 is	 the	 equation	 of	 a	 damped	 oscillator	 that	 describes	 the	motion	 of	 a	 particle	

subjected	to	the	restoring	force	െܷ݀/݀ݏ	and	the	damping	force	െݏܩሶ.	 If	damping	 is	not	 too	strong,	

the	motion	 is	 expected	 to	 be	 oscillatory.	 The	 potential	ܷሺݏሻ	is	 useful	 for	 visualizing	 the	 system’s	

behavior;	for	instance,	the	change	in	the	shape	of	the	potential	for	different	ߚଵ	and	ߜ	helps	to	explain	

the	 occurrence	 of	 the	 bifurcations	with	 respect	 to	 the	 number	 of	 equilibrium	points	 (e.g.	 Fig.	 C4	

below).		

The	damping	coefficient	ܩ	determines	regions	where	energy	 is	absorbed	or	supplied.	This	can	

be	seen	by	considering	the	rate	of	change	of	the	total	energy	of	system	(C14):	

ܧ݀
ݐ݀

ൌ
݀
ݐ݀
൬
1
2
ሶଶݏ ൅ ܷሺݏሻ൰ ൌ െܩሺݏሻݏሶଶ.																																																								

Thus,	regions	for	which	ܩ ൐ 0	are	the	regions	where	energy	is	extracted	from	the	system	(positive	

or	 true	 damping)	 and	 regions	 for	which	ܩ ൏ 0	are	 the	 regions	where	 energy	 is	 pumped	 into	 the	

system	(negative	damping).	As	follows	from	equation	(C15),	ܩ ≷ 0	if	

ߛ̅ ≶
ሺ1 െ ଵߚ ൅ ሻߟ ൅ ݏߜ	ߟଶߚ2 ൅ ሺߚଵ ൅ ߟଵߚ2 െ ଶݏሻߟ2

ሺ1ߟଶߚ െ ଶሻݏ
	.																																								

This	 condition,	valid	near	 the	origin	|ݏ| ≪ 1	for	ߜ ≪ 1,	 shows	 that	damping	 changes	 sign	 from	

positive	 to	 negative	 with	 growing	̅ߛ,	 provided	ߟ ൐ ଵߚ െ 1.	 In	 the	 ferromagnetic	 symmetric	 case	

ߜ) ൌ 0, ଵߚ ൐ 1),	damping	becomes	negative	first	at	the	origin	ሺݏ ൌ 0ሻ,	so	that	for	the	relevant	values	

of	parameters,	ߚଵ ≳ ߟ	and	ଶ~1ߚ	,1 ≫ 1,	the	critical	̅ߛ,	at	which	damping	changes	sign,	is	given	by	

,௖~1ߛ̅ or	equivalently		ߛ௖~
1
௦ݓ
	≫ 1.																																																				
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