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“Machine learning” repeatedly appears in the news, from the game of go to 
autonomous cars: what can those algorithms do for us in finance? 

Supervised learning and its pitfalls in finance 
In this first report in the series, we focus on supervised learning and note that 
while machine learning is very relevant to us, there are dangerous pitfalls, 
sometimes specific to the type of data we deal with. In particular, we examine 
penalized regression (lasso and elastic net), decision trees, and boosting – we 
also mention, in passing, support vector machines and random forests. 

Application to the Japanese equity market 
To make things more concrete, we try to use those algorithms to combine the 
investment factors in our database in order to build a stock ranking system for 
the Japanese market; this shows the limitations and pitfalls of traditional 
machine learning practices in finance. 

Takeaways 
More specifically, we: 

� Explain the ideas and the math behind some of the most popular 
machine learning algorithms; 

� Show that the usual ways of preventing overfitting in machine learning 
fail in finance; 

� Layout a recipe for the construction of a machine-learning-based 
investment strategy; 

� Emphasize that investing is still an art in which we may want to 
remain on top of the recommendation suggested by the machine. 
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A letter to our readers  
 

Statisticians want to turn humans into computers. 
Machine learners want to turn computers into humans. 

We meet somewhere in the middle. 
N. Lawrence, 2012 

 
 

Machine learning is all over the news, from self-driving cars to the game of go. 
In this report, we see what machine learning is, how it can be applied in 
finance, and what the pitfalls to avoid. 

We have used machine learning in many of our past reports. 

� For instance, when examining quality indicators [51], we used 
penalized regression to forecast future returns, penalized logistic 
regression to forecast future drops in prices and random forests to 
combine those indicators into an investment signal. 

� Our report on insider transactions [7] relied on boosting to deal with 
large numbers of predictive variables. 

� In our momentum trilogy [52, 53, 54], we used, among other tools, 
generalized additive models (GAM) and state space models.1 

� When studying risk aversion [25], we combined risk indicators with a 
non-negative matrix factorization (NMF) and inferred relations 
between risk factors with Bayesian networks. 

� The way we group investment factors in our Quantfucius reports, with 
“truncated graphs”, can be seen as an application of social network 
analysis, or a crude form of topological data analysis [10, 9, 15]. 

This report examines machine learning more systematically. 

We provide an introduction presenting some historical background, the main 
types of machine learning (supervised and unsupervised learning), and the 
main software tools. Then in the first part of this report, we examine in more 
detail some popular machine learning algorithms, such as penalized 
regression, support vector machines, decision trees, random forests and 
boosting. 

In the second part of the report, we try out some of these algorithms to devise 
an investment strategy, using the Japanese market as an example. This shows 
more concretely what limitations those algorithms have and what dangers they 
present. In particular, we show that the traditional way of avoiding overfitting, 
cross-validation fails in finance: as a remedy, we suggest to check that the 
model remains interpretable. 

                                                           

1 State space models may not sound like machine learning, but we use a rather broad definition: we call 
“machine learning” any algorithmic approach to statistical problems. Since the Kalman filter is an 
algorithmic procedure to efficiently compute conditional Gaussian distributions, it falls under that umbrella. 
You may have been doing machine learning without knowing it. 
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In the conclusion, we put forward a non-machine-learning procedure that 
performs even better, list the steps to follow should you want to use machine 
learning as part of your investment process, stress again the main pitfall 
(classical ways of preventing overfitting fail), and list other potential 
applications of machine learning. 

Yours sincerely, 

Vincent, Khoi, Ada, Hemant  & the Global Quantitative Strategy Team. 

Deutsche Bank Asia Quantitative Strategy Team. 
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Screen   
Figure 1 shows some large caps in the long and short portfolios built from the 
final model examined in this report (a constrained regression), for Japan, as of 
this writing. Since the model is linear, we can decompose the score of each 
stock as a sum of contributions of the individual variables, and group those 
contributions according to the type of information each factor tries to capture. 
The largest weights (short-term reversal, 12-minus-1-month momentum,  
5-year risk, sales diffusion, dividend yield, etc.) are shown in figure 81. 

Figure 1: Large caps with the highest and lowest scores 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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What is machine learning?  

Is machine learning just a rebranding of statistics? 

For several years, “machine learning” has been a recurrent news item: self-
driving cars, machine translation, recommendation engines, machine learning 
competitions, deep dream (Figure 2 and Figure 3), alpha go, etc. What is 
behind this term? 

Depending on who you ask, you will get different answers. 

For some, it is a response to the failure of artificial intelligence (AI). In the 
1960s, researchers were optimistic, and thought that tasks like machine 
translation were only a few months away. They tried to teach computers 
everything that could be known about the world, together with rules to deduce 
new facts. Unfortunately, as those rule systems became larger and larger, it 
became apparent that with the slightest inconsistency or error in those rules, 
the system would grind to a halt. The systems were not robust enough. After a 
long “AI winter” (Figure 6), researchers eventually managed to introduce 
uncertainty into the logic machinery: machine learning became a part of 
statistics, while retaining its algorithmic roots. 

For some, “machine learning” is just a re-branding, or a re-discovery of 
statistics: indeed, most of the methods of machine learning were already 
known to statisticians and were simply re-developed, re-named or  
re-interpreted by computer scientists. Figure 5 gives a few examples.2 

Our definition is somewhere in between: for us, machine learning is an 
empirical, algorithmic approach to the problems already tackled by Statistics. 

Figure 2: Deep Dream 

Source: J. Mullen, https://en.wikipedia.org/wiki/File:Deep_Dreamscope_(19822170718).jpg 

                                                           

2 Also see  http://statweb.stanford.edu/~tibs/stat315a/glossary.pdf 
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Figure 3: Self-driving car 

 
Source: S. Jurvetson, https://en.wikipedia.org/wiki/File:Google%27s_Lexus_RX_450h_Self-Driving_Car.jpg 

 

Figure 4: Kaggle home page 

Kaggle is a website hosting “data science competitions”: participants use machine learning tools to solve a problem, 

e.g., automatically distinguishing between cats and dogs, identifying diabetic retinopathy in eye images, or making 

better customer recommendations; for some competitions, the best entry receives a cash prize. 

 
Source: https://www.kaggle.com/competitions 

 



30 September 2016 

Quantiles 
 

Page 8 Deutsche Bank AG/Hong Kong

 

 

 

Figure 5: (Necessarily incomplete) lexicon from machine learning to statistics and finance 

 
Source: Deutsche Bank Quantitative Strategy 

 

Figure 6: Artificial intelligence timeline 

Source: Deutsche Bank Quantitative Strategy 
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Machine learning algorithms and tools 

Machine learning problems are usually divided into two broad categories: 
supervised and unsupervised. 

In supervised learning, we are trying to predict something (“labels”), for 
instance future returns, or whether a company will default in the near future; 
the training data contains the ground truth (past returns, past defaults). 
Regression and classification are supervised learning problems. 

In unsupervised learning, we are trying to find structure in the data, but there 
is nothing to predict: for instance, we can try to find clusters in the data (but 
we do not know beforehand what those clusters mean) or a low-dimensional 
representation of the data (but we do not know beforehand what those 
dimensions mean). Clustering, dimension reduction and density estimation are 
unsupervised learning problems. 

In finance, unsupervised learning can be used to group stocks (you may end 
up with industries, or countries, or value versus growth stocks, or a 
combination of those attributes, or something entirely different), or investment 
factors, or as a pre-processing step to reduce the dimension of the data. 

However, not all problems fit into those two main categories. 

In semi-supervised learning, only part of the data is labelled: in the training set, 
we only know the variable to predict for some of the observations. The 
problem is often tackled by a mixture of supervised and unsupervised learning, 
using unsupervised methods to understand the structure of the (mostly-
unlabelled) data, and supervised methods to leverage that structure. 

For instance, one may want to teach the computer to distinguish between cat 
and dog pictures, from a small set of labelled pictures, but with a large number 
of unlabelled pet pictures: we can give the pet pictures to an unsupervised 
learning algorithm, to learn the features present in those images (the algorithm 
does not know what they are, but they could turn out to be pointy ears, flappy 
ears, fur, eyes, tail, etc.), and then use those features, with a supervised 
learning algorithm, on the (labelled) cat and dog pictures. 

Active learning starts with a completely unlabeled dataset, and lets us choose 
which observations we want labeled, depending on the cost of those labels 
(e.g., if they require expensive or time-consuming physical or medical 
experiments or, in finance, human expertise to read and understand a press 
release or a contract) and how informative we hope them to be. 

Online learning refers to algorithms that adapt over time, as data is 
progressively revealed. In addition, streaming algorithms must process the 
information without storing all of it. 

Transfer learning learns a model on one dataset and applies it to a related but 
different one. This is common in medicine (the model is estimated on a few 
patients, for which we took the time to carry out all the imaginable medical 
tests, and applied on different patients, when we only have the time and 
money to do some of those tests), and image or text processing (the model 
learns what a photograph looks like from a large image database, what English 
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text looks like from a huge and diverse corpus, but then applies this knowledge 
to a much narrower domain, e.g., analyzing satellite images or understanding 
business contracts). In finance, we may sometimes want to fit a model for a 
country with enough historical data, and apply it, perhaps with a few 
modifications, to a market with not enough training data. 

Reinforcement learning [41] tries to find actions (moving a robotic arm, moving 
a chess piece, buying or selling a stock) that optimize some reward. However, 
the reward is only known much later, and we do not know which actions 
(chess moves) played a role and which were irrelevant. In finance, 
reinforcement learning can be used to devise trading strategies (“I want to sell 
n shares by the end of the day: should I place a big order now, or smaller 
orders through the day? Should I start with large orders and decrease their 
sizes or the opposite?”) or multi-period investment strategies (“How should the 
balance between stocks and bonds change, in my retirement account, as I 
age?”). 

Figure 7: The machine learning vocabulary is often overwhelming 

 
Source: Deutsche Bank Quantitative Strategy 
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Most quants do their computations through languages such as R or Python. 

For machine learning, Python provides a unified interface to the most common 
algorithms, through scikit-learn.  It is therefore very easy to try new algorithms, 
but only the most standard ones are available. 

R presents a completely opposite picture: there is no unified interface (though 
packages such as caret or mlr try to provide one) but a gazillion independent 
packages, providing (almost) all the variants of all the algorithms you can think 
of – Figure 8 lists the packages we had in mind (or used) when writing this 
report, but there are many more. 

Figure 8: A few R packages and functions for machine learning. This list is very incomplete: see https://cran.r-

project.org/web/views/MachineLearning.html for more. 

Supervised learning: 
� Penalized regression: glmnet 
� Boosting: xgboost, gbm, mboost 
� Generalized additive models (GAM), splines, smoothing:  gam, mgcv, fda, splines::ns, rms::rcs,

Hmisc::rcspline, stats::loess 
� Neural nets: net::multinom, mxnet 
� k-nearest neighbours: class::knn 
� Linear or quadratic discriminant analysis: MASS::lda, MASS::qda 
� Support vector machines: e1071::svm 
� Decision trees: rpart, partykit::ctree 
� Random forests: randomForest 
� Ensemble learning: ForecastCombinations 

 
Unsupervised learning: 

� Clustering: stats::kmeans, dbscan 
� Principal  component  analysis  (PCA)  and  variants: stats::prcomp,   fastICA,  NMF, 

stats::cmdscale, MASS::isoMDS, MASS::sammon, Rtsne 
� Manifold learning: vegan::isomap 
� Graphs: igraph, ape::mst 
� Graphical models: bnlearn 
� Topological data analysis: TDA 

 
Source: Deutsche Bank Quantitative Strategy 
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We sometimes use separate programs. Here are a few examples. 

� Vowpal Wabbit3 is a command line tool for large linear models – useful 
if the data, or even the model, does not fit in memory. 

� Stan 4  is a probabilistic programming language for Monte Carlo 
estimation of Bayesian models. 

The “big data” ecosystems provide a rather limited number of machine 
learning algorithms – we do not recommend them unless you already have the 
required infrastructure and your data is too large for other tools. 

� Hadoop5 and its Mahout6 machine learning library are limited by their 
reliance on the Map/Reduce paradigm: most machine learning 
algorithms are iterative and forcing them into that framework leads to 
poor performance;7 

� Spark8 and its MLlib9 library address those problems; 

� More recent tools, such as H2O10 (machine learning on big data, from 
R or other languages) or Flink 11  (a Spark clone) may be worth 
investigating. 

Prompted by the recent media coverage of “deep learning”, some of you may 
be tempted by neural networks [12, 21, 33]. Here are the main libraries to 
estimate those models. 

� Theano12 is a low-level Python library for neural nets; you may prefer a 
higher-level interface such as Keras13 or Lasagne14; 

� TensorFlow15 is a more recent low-level Python library for neural nets, 
trying to replace Theano; it can also be used through Keras; 

� MxNet16 is a C++ library with interfaces in many languages (R, Python, 
etc.) – in R, this is probably your current best (or only) alternative; 

� Torch17 is a Lua18 library for neural networks with a strong emphasis 
on image processing; 

� Caffe19 also focuses on image analysis; since it is not a library (you 
cannot program – you can only write configuration files), you may find 
it limiting; 

� DeepLearning4j20 is a Java and Scala library for neural networks. 

                                                           

3 https://github.com/JohnLangford/vowpal_wabbit 
4 http://mc-stan.org/ 
5 http://hadoop.apache.org/ 
6 http://mahout.apache.org/ 
7 See the benchmarks on http://spark.apache.org/. 
8 http://spark.apache.org/ 
9 http://spark.apache.org/mllib/ 
10 http://www.h2o.ai/ 
11 https://flink.apache.org/ 
12 http://deeplearning.net/software/theano/ 
13 https://keras.io/ 
14 https://github.com/Lasagne/Lasagne 
15 https://www.tensorflow.org/ 
16 https://github.com/dmlc/mxnet 
17 http://torch.ch/ 
18 Lua is a programming language used in embedded systems and the video games industry. 
19 http://caffe.berkeleyvision.org/ 
20 http://deeplearning4j.org/ 
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Why does machine learning work – or fail? 

Here are the main reasons why machine learning succeeds, when it does. 

� Manual feature engineering. Although “deep learning” shows 
promises in some domains, machine learning often still struggles to 
combine pieces of information in complex ways. Using some domain 
knowledge to define and precompute variables likely to have some 
predictive power (or, simply, interpretable quantities) still proves 
useful. In finance, this includes, for instance, financial ratios, technical 
indicators and valuation models (dividend discount model, etc.). 

� Ensembling. Instead of learning a single model, it is often preferable to 
learn several and combine their forecasts; since they are unlikely to 
make the same errors, those errors will cancel out, to some extent, 
giving a more precise (lower variance) forecast. 

� Regularization. While one may be tempted to consider ever complex 
models, this leads to overfitting. To control overfitting, one can add a 
penalty for complexity, so that complex models will only be selected if 
the added complexity is worth it, i.e., if the improvement they bring 
compensates the complexity penalty they incur. 

� Optimizing the correct metric. While statistics have a fairly limited 
number of ways to measure how good a model is (basically, the log-
likelihood or some approximation of it), machine learning is more 
empirical and accepts virtually anything as a loss function: in 
particular, one can take a measure meaningful from a business point 
of view, a measure reflecting the costs and benefits of the solution. 
For instance, in finance, we often follow a multi-step procedure: 
forecast future returns, use the forecasts to build a portfolio and look 
at its performance – what we optimize, the quality of the return 
forecasts, and what we care about, the performance of the portfolio, 
are different things. Machine learning allows a single-step approach, 
in which we directly optimize the portfolio performance. 

But machine learning does not always succeed. Here are the main causes for 
failure. 

� Complicated models.  Even though your model may give consistently 
good forecasts, it may be too complex to be of practical use and put 
into production. This is particularly the case with ensemble models: if 
the model is the average of thousands of already large models, 
computing the forecasts may be too time- or resource-intensive. 

� Overfitting. Even though there are methods to estimate, or at least 
control, overfitting (regularization, cross-validation), the pitfalls are 
numerous and it remains a very real problem. We note that the 
situation is actually much worse in finance. 
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Theory 
In this section, we review a few algorithms one could use to forecast forward 
returns. If you are unfamiliar with those methods, you can find more details in 
[22] or [19]. 

In particular, we focus on the following. 

� Penalized regression (lasso or elastic net) is an alternative to ordinary 
least squares when there are too many predictors, or when we 
suspect that only some of them are relevant; it tries to select a sparse 
model, which will be less noisy and easier to interpret. 

� Support vector machines (SVM, large margin classifier, hinge loss 
classifier) have a good reputation for classification problems (i.e., to 
predict qualitative variables) but can also be used for regression 
problems (i.e., to predict quantitative variables). Kernel SVMs can 
capture non-linear relations and interactions, and are insensitive to the 
number of predictors but, unfortunately, not to the number of 
observations – using them for large datasets is problematic. 

� Decision trees are easy to interpret and can capture non-linear 
relations, and even interactions, but they are often too tied to the 
training dataset to be relied on. 

� Random forests are sets of decision trees that try to address that 
problem – unfortunately, they are no longer interpretable and the 
models can become extremely large.  Boosted decision trees use a 
similar idea, but are less unwieldy. 

� Generalized additive models (GAM) are a generalization of linear 
models that allows for non-linear relations – indeed, we often notice 
that extreme values behave differently, and V- or Λ-shaped relations 
are not uncommon. Boosting adds a lasso flavour to GAMs and allows 
them to robustly deal with a large number of variables. 

Figure 9 summarizes the benefits and limitations of those algorithms. 

While we have a preference for the lasso (fast, robust, interpretable) and the 
boosted GAM models (robust, interpretable, non-linear), there is no best 
algorithm: the “no free lunch theorem” (yes, it is a theorem: see [49, 48] for a 
precise statement and proof) states that no algorithm is good for all problems. 
In other words, you will need different algorithms for different situations. 
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Figure 9: Advantages and limitations of the models presented in this report 

 
Source: Deutsche Bank Quantitative Strategy 
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Penalized regression and sparse models 

The most straightforward method to predict future returns is the linear 
regression. 

                       

The coefficients β can be estimated by minimizing the sum of squared 
residuals. More generally, many statistical models are estimated by minimizing 
some loss function: a sum of squares for ordinary least squares, a sum of 
absolute values for robust (LAD, least absolute deviation) regression, minus the 
log-likelihood for logistic regression, etc. 

Unfortunately, this does not scale: if there are many predictors, and if several 
contain similar information (e.g., different measures of “value”, or the same 
financial ratio computed from different sources), we often end up with very 
large positive or negative coefficients (Figure 10 and Figure 11). In-sample, 
they cancel each other out and do no harm, but out of sample, they can turn 
the investment signal into pure noise. 

Figure 10 gives a worked out example: a linear regression with two variables 
containing almost the same information. In this example, we attempt to 
explain future returns from two related financial ratios, two forms of 
Debt/Equity, where the equity comes from accountants or from the market. 
The linear regression gives large coefficients to those two variables, with 
opposite signs that almost cancel each other out, 

        return = −0.52 − 2.49 × Debt/Equity_1 + 2.67 × Debt/Equity_2 + residual. 

The penalized regression, in contrast, starts with an empty model and 
progressively increases the weights:  we can stop before the coefficients get 
too large or end up with a counter-intuitive sign, e.g., 

        return = intercept + 0 × Debt/Equity_1 + 0.18 × Debt/Equity_2 + residual. 
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Figure 10: Linear regression when two variables contain almost the same information. 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 11: Linear regression to forecast future returns: variables with the largest weights. The performance of the 

model is not worrying: the out-of-sample information ratio (IR) is 1.8. The amplitude of the weights is not worrying: 

there are 124 predictors and both predictors and variable to predict are uniformly distributed on [0, 1]. However, we 

notice pairs of positive and negative coefficients for similar variables that almost cancel each other out: variants of the 

Piotroski signal, Debt/Equity ratio, R&D, etc.: in spite of its apparent good out-of-sample performance, the model is 

clearly overfitting the data. 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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To control this phenomenon, we can add a penalty (or regularizing term) for 
large coefficients: instead of looking for the parameters β that minimize the 
loss, we can minimize the sum of the loss and a penalty. 

                         

Common penalties include: 

� The sum of the squared coefficients (called L2 penalty, or ridge 
regression penalty, or Tikhonov regularizer); 

� The sum of the absolute values of the coefficients L1 (lasso); 

� A linear combination of L2 and L1 penalties (elastic net). 

Penalization can often be interpreted as a Bayesian prior (a Gaussian prior for 
the L2 penalty, a Laplace prior for the L1 penalty) 21 or as a shrinkage towards a 
simpler model (the constant model, where all the coefficients β are zero). 

The benefits of the penalty are manifold: 

� It allows models with a large number of parameters, even models with 
more parameters than data points; 

� It helps avoid extreme values in the coefficients; 

� It reduces variance – it also increases bias, but the resulting error, 
which combines variance and bias, is often lower; 

� The L1 penalty can generate sparse models, i.e., models in which most 
of the coefficients are zero, i.e., models that only use a small number 
of variables – such models are particularly easy to interpret. 

 

Figure 12: Bias-variance trade off. The bias is error coming from the fact that our model cannot capture the complexity 

of the data. The variance error comes from the fact that the training data, being random, does not fully reflect the 

properties of the data. 

 
Source: Deutsche Bank Quantitative Strategy 

 

                                                           

21 A Bayesian MAP (maximum a posteriori) estimator maximizes the posterior model log-probability, which 
is the sum of the model log-likelihood and the prior log-probability. For a Gaussian prior, this prior log-
probability is an L2 norm, which can be interpreted as an L2 penalty; for a Laplace prior, the log-probability 
is an L1 norm. See [20], section 2.9 for more details. 
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To understand why the lasso yields sparse models, let us notice that the 
penalized optimization problem 

                               

is the Lagrangian dual of the constrained optimization problem 

                            

Since the loss function is often smooth, its level lines (or hypersurfaces) can be 
thought of as balloons (blue, in Figure 13), inflating as we move away from the 
unconstrained minimum. Since the feasible area (grey) is an L1 ball, it has 
sharp edges. The solution of the constrained optimization problem is the 
smallest level line that touches the feasible area. 

When a balloon touches an object with a lot of sharp edges, it tends to touch it 
at a vertex, an edge or a low-dimensional facet – those points correspond to 
models with all but one, two, or a small number of non-zero coefficients. 

Figure 13: Optimization with an L2 (ridge), L1 (lasso), Lp (0 < p < 1) or L0 constraint. The grey area is the set of feasible 

solutions, the blue lines the level curves of the objective, and the orange square the optimal solution. 

Source: Deutsche Bank Quantitative Strategy 
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There is one last detail to sort out: how do we choose the penalty coefficient λ? 
We can weasel out of this problem by not choosing it and letting it vary: we do 
not get a single solution, but a whole family of solutions, a regularization path, 
from the trivial, constant model (for λ = ∞) to the OLS model (for λ = 0). 
Eventually, however, we have to select one of those models: this can be done 
by cross-validation, or by looking at the out-of-sample performance, and/or by 
checking which models are interpretable. 

Figure 14 shows a regularization path. The penalty decreases along the 
horizontal axis, from a model with no variables on the left, to the 
(unconstrained) ordinary least squares (OLS) model on the right. We notice 
that the variables enter the model one at a time, and that their coefficients 
progressively increase until they stabilize around the OLS values – but, in some 
cases, the values can decrease, as the weight of another variable, providing 
similar information, increases. They may also change sign. 

One may be tempted by a poor man’s sparse regression: start with the OLS 
model and discard the variables with the smallest coefficients. This “hard 
thresholding”, and a variant, soft thresholding (truncate and shrink the 
remaining coefficients towards zero, to remove the discontinuity), can be 
justified if the predictors are orthogonal (see [20], table 2.3) and soft 
thresholding is often used as a step in the algorithms computing the 
regularization path. 

Figure 14: Regularization path, from the most penalized, intercept-only model on the left, to the non-penalized, 

ordinary least squares model, on the right. 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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In summary, the lasso has the following advantages: 

� The model is simple (linear) and interpretable (we can limit the number 
of variables entering the model); 

� The model can deal with a very large number of variables and is robust 
to collinearity; 

� The model is unlikely to overfit the data; 

� The algorithm is very fast, and the resulting model is small (just a 
linear relation).  

However, it also has one limitation: 

� It does not capture non-linear relations or interactions. 

For more details about the lasso and its generalizations, please refer to [20]. 
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Support vector machines (SVM) 

Support vector machines (SVM) are typically used for classification problems: 
given two clouds of points (e.g., companies that will go bankrupt in the near 
future and companies that will not) and we want to find a boundary that 
separates them. 

Support vector machines combine two ideas. 

� SVMs are high-margin classifiers: they do not look for a line that 
separates the two clouds of points, but a band, as large as possible 
(left figure). Notice that some of the data points touch the band: these 
are the support vectors. The other data points do not have any 
influence on the model and could be removed. 

� SVMs transform the data by embedding the points into a higher-
dimensional space, which tends to make the desired boundary linear – 
this is the kernel trick (right figure: the boundary is linear in x, y, x2, y2, 
xy). In practice, there is no need to give an explicit embedding: the 
Gram matrix (“kernel”) suffices. In particular, this makes non-numeric 
data (text, graphs) or mixed data amenable to standard classification 
or regression methods. Radial basis function kernels are popular. 

Figure 15: The two ideas behind support vector machines (SVM) 

 
Source: Deutsche Bank Quantitative Strategy 

The SVM optimization problem 

                      

can be written as a convex (quadratic) problem 

                      

where yi = +1 if i ∈ L+ and −1 otherwise. 
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The soft-margin SVM allows misclassifications, but penalizes them. 

                        

Support vector machines can also be used for regression: the algorithm looks 
for a band, as narrow as possible, that contains the data; as for classification, 
one can add a penalty for points outside the band. 

Figure 16: SVM for regression 

 
Source: Deutsche Bank Quantitative Strategy 

In summary, support vector machines have the following advantages: 

� They are insensitive to the number of variables; 

� They can capture non-linear relations and interactions.  

However, they have the following limitations: 

� They scale quadratically with the number of observations:22 their use 
with large datasets is problematic; 

� The model can be summarized by the kernel functions and the support 
vectors: it is not easily interpretable. 

 

  

                                                           

22 Unless you use a linear SVM or resort to approximations, as in [29]. 
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Decision trees and random forests 

A decision tree is a list of questions (blue in the Figure 17), arranged in a 
hierarchical fashion, leading to decisions or forecasts (red). 

Figure 17: A decision tree 

Source: Deutsche Bank Quantitative Strategy 

Decision trees are often built in a greedy,23 top-down fashion: 

� Select a predictor xi; 

� Select a breakpoint ai; 

� Cut the dataset, using the chosen predictor and breakpoint, into two 
new datasets, { x  : xi ≤ ai } and { x  :  xi > ai } and proceed, recursively; 

� Stop when the leaves are too small, the tree too deep, or there is no 
good predictor to break on; 

� Prune the tree to avoid overfitting. 

Various criteria are used to select the variable and its break point: 

� Gini impurity24 (equivalently, the Herfindahl index or Tsallis entropy),25 
1 − ∑pi

2, used in CART; 

� Information gain (also called Shannon entropy), ∑ −pi log pi, used in 
C5.0; 

� Variance reduction; 

� χ2- or F-tests, used in CHAID; 

� Permutation tests, used in conditional inference trees. 

                                                           

23 Greedy algorithms tend to be suboptimal. There are non-greedy alternatives to decision trees, e.g., 
Bayesian rule lists [44, 27, 50]. 
24 Unrelated to the Gini coefficient. 
25 Here are the definitions of all those quantities. 
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Decision trees are very noisy: if you change the data a little bit (by adding or 
removing a few months, a few stocks, or a few variables), the results are 
completely different. 

Decision trees have their uses, though. For instance, given a good but overly 
complex model, too complex for us to understand what it does, we can train a 
decision tree on its output, to see what it does. Since the decision tree is 
trained on the output of the black-box model and not on real data, we can 
generate much more training data, and therefore obtain a more stable result. 

In summary, decision trees have the following advantages: 

� They are eminently interpretable; 

� They can capture interactions.  

But they also have limitations: 

� They are too noisy to be relied on; 

� Though they can model interactions, the greedy algorithm used to 
build them can fail to capture those interactions. 
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Random forests 

Decision trees are also useful as building blocks for more complicated models: 
for instance, a random forest is an ensemble of decision trees: 

� Use a new random sample for each tree; 

� For each node, select the variable to split on from a random subset of 
variables instead of all the variables; 

� Do not prune the trees; 

� Average the forecasts. 

Random forests and, more generally, ensemble methods, look appealing, but 
they pose a few problems. First, they can be very unwieldy: since a forest 
contains hundreds or thousands of trees, it is cumbersome to store and time-
consuming to fit and use. The situation gets worse when we need several 
forests, e.g., if we want to estimate a model on a moving or expanding 
window. 

Interpretability is another problem: while a single tree is very intuitive, it is 
difficult to grasp what hundreds of them are saying. 

Some suggest looking at the importance of each variable, i.e., how often each 
variable appears in the trees. Unfortunately, if several variables contain similar 
information (e.g., different measures of “value”), their importance will be 
diluted. Some suggest partial dependency plots, to show the influence of a 
variable when everything else remains constant: this makes the assumption 
that the predictors do not interact – but decision trees do model those 
interactions. 

An often-touted advantage of random forests is their inability to overfit the 
data: as shown on Figure 18, in which we use a random forest (with no 
constraint on the tree depth) to forecast future returns and build quintile 
portfolios from those forecasts, the risk is still very real. 

In summary, random forests have the following advantages: 

� They can model interactions; 

� They are less noisy than decision trees. 

However, they also have limitations: 

� They are no longer interpretable; 

� They are often too large to be used. 
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Figure 18: Despite popular belief, random forests can overfit 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Boosting 

Boosting is another ensemble algorithm, like random forests, which combines 
simple models (“base learners” or “weak learners”), e.g., decision trees. 
Contrary to random forests, those simple models are not trained on completely 
random subsets of the data: boosting puts more weight on observations not 
well accounted for by the previous models. This usually results in much 
smaller ensembles. 

More precisely, the algorithm goes as follows: 

� Fit a weak learner f to the data, giving more weight to currently 
misclassified observations; 

� Move the model F towards this weak learner, F ← F + αf; 

� Iterate a few times. 

We can choose the weak learners, how we compute the weights, the step size 
α, and the number of iterations. For instance, Adaboost uses the following: 

� Weak learners: shallow decision trees; 

� Exponential loss: Loss(ŷ, y) = exp(−yŷ), y ∈ {±1}; 

� Weight = exp(−yŷ); 

� Stepsize α: such that F + αf minimizes the loss; 

� Number of iterations: less than 10. 

 

Figure 19: Loss functions, plotted for y = +1 

 
Source: Deutsche Bank Quantitative Strategy 
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The Viola-Jones algorithm was one of the early applications of boosting: the 
camera in your mobile phone may be using it to detect faces. As weak 
learners, it uses simplistic feature detectors, vertical or horizontal edges, and 
vertical, horizontal or diagonal bars (or lines); they are combined with 
AdaBoost. 

          

To detect faces, it scans the whole image to detect the first feature, e.g., a long 
horizontal dark bar, corresponding to the eyes. 

          

That gives a large set of potential faces, which has to be pruned. Among those 
candidate faces, it looks for the next feature, e.g., a bright area with darker 
areas on the left and the right, corresponding to a nose.  

          

The algorithms iterates, each new feature further reducing the set of 
candidates. It is fine-tuned to reduce the number of false negatives. 
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Boosting can also be interpreted as gradient descent on a space of functions 
(indeed, the final, combined model is in the convex hull of the weak learners): 
this is gradient boosting. 

Deutsche Bank Quantitative Research has used boosting in the past, for 
instance in the N-LASR model [45, 47, 46]: the weak learners were continuous 
piecewise affine functions on the quintiles of one of the predictors. 

Figure 20: N-LASR model, Sloan’s accruals factor, figure 

4 from [46] 

 Figure 21: N-LASR model, Sloan’s accruals factor after 

transformation, figure 5 from [46] 
 

Source: Bloomberg Finance LLP, Compustat, IBES, Russell, S&P, Thomson Reuters, Worldscope, 
Deutsche Bank Quantitative Strategy  Source: Bloomberg Finance LLP, Compustat, IBES, Russell, S&P, Thomson Reuters, Worldscope, 

Deutsche Bank Quantitative Strategy 

 

Boosted trees have the following advantages: 

� They can model interactions; 

� They are much smaller than random forests; 

� They are usually sparse, and less likely to overfit the data than random 
forests. 

However, they still have a limitation: 

� Although the individual trees are interpretable, their combination is 
not. 

In this report, we will look at two examples of boosing, with decision trees 
(xgboost), and with 1-variable non-linear models (mboost or gamboost). 

Since non-linear models are not as widely known as they should be, we review 
them in the next section. 
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Generalized additive models (GAM) 

Let us examine another way, besides trees and kernels, to capture non-linear 
relations. To simplify the exposition, let us first assume there is only one 
predictor, x, i.e., we want to fit a model of the form y = f(x) + ε, where f is 
unknown –  in other words, we want to smooth a cloud of points. 

Local regression fits a linear model on a moving window: the envelope of the 
resulting lines gives a smooth approximation of the cloud of points (Figure 22). 
Instead of a moving window, one can use Gaussian weights (loess) or some 
other “kernel”26; instead of a linear model, one can use a constant model 
(Nadaraya–Watson kernel smoothing). 

An alternative is to express f as a sum of “simpler” basis functions, f = ∑fi, by 
minimizing 

                         

Here are a few examples of basis functions (Figure 23): 

� Locally constant functions; 

� Locally affine functions; 

� Locally polynomial functions (splines); 

� Trigonometric functions (Fourier analysis); 

� Wavelets; 

� etc. 

Yet another way of smoothing a cloud of points is to solve the optimization 
problem 

                          

The solution turns out to be piecewise polynomial – these are splines. 

Notice that the parameter λ , or the number of basis functions, or the 
bandwidth of the kernel play a regularizing role, similar to what we saw with 
penalized regression. 

Generalized additive models (GAM) generalize smoothing to several predictors 
by smoothing one variable at a time. The model is of the form 

                        

where the fi are unknown functions of one variable. Those models are usually 
estimated by backfitting: 

                                                           

26 This is not the same notion of kernel as for SVMs: here, a kernel is a weight function. 
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� Assume that all the functions, except one, are known; 

� Estimate that function, fj, by smoothing the residuals, 

                         

� Iterate until convergence. 

 It is possible to add interactions, e.g., by considering models of the form 

                             

Generalized additive models (GAM) have the following advantages: 

� They can model non-linear relations, and even pairwise interactions; 

� As linear models, they are easy to interpret. 

However, they share the main problem of unpenalized models: 

� They overfit the data when there are too many or collinear variables. 

Generalized additive models can also be used as base learners for boosting.  

Boosted GAMs (sometimes called “mboost” in the rest of this report – that is 
the implementation we use) have the following advantages: 

� They can model non-linear relations and even pairwise interactions; 

� They remain linear: they are easy to interpret; 

� They as sparse. 

There is still one limitation, though: 

� As the number of boosting steps increases, the computations can 
become very time-consuming. 

Figure 22: Local regression (kernel smoothing, loess): for each x, fit a weighted linear model, with more weight for 

observations close to x. 

Source: Deutsche Bank Quantitative Strategy 
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Figure 23: Smoothing with basis functions. There is one family of basis functions per row (locally constant, locally 

linear, splines); the first column shows the basis functions; the second how they enter the model; the third one the 

data (points), the ground truth (grey) and the fitted model (black line). 

Source: Deutsche Bank Quantitative Strategy 
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The dangers of machine learning in Finance 

To avoid overfitting, machine learning suggests the following procedure. 

� Split the data into a training set and a validation set; 

� Fit the model on the training set and check its performance on the 
validation set; 

� Fine-tune the parameters; choose the best model; 

� Use a third test set, at the very end, just once, to estimate the actual 
performance of the model; 

� Re-fit the model on the whole dataset. 

In practice, we use the first 70% to 90% of the data as training set, and the 
remaining, i.e., more recent observations, as validation set. The division is only 
based on time: since all stocks are subject to the same common, global 
influences, using countries or sectors would create dependencies between the 
training and validation sets. 

The test set discipline is difficult to enforce: the test set should be used only 
once, at the very end, and the model should not be tweaked after that. 
Unfortunately, when presenting the final results, someone (internal or external 
client) often suggests some modification – following that suggestion would 
taint the test set and invalidate the conclusions. It may be easier to forego the 
test set during the study and, when we are sure it is finished, start to gather 
new data, for 3 to 6 months, to use as a test set. 

If we fit models of varying complexity on the training set, we can choose that 
that gives the smallest error on the validation set, as suggested by Figure 24 
and Figure 25. 

With real data (Figure 26), the frontier between overfit and underfit is less 
clear.27  

Figure 24: Model validation: choose the model complexity to minimize the error on the validation set 

 
Source: Deutsche Bank Quantitative Strategy 

 

 

                                                           

27 For more examples on real data, check http://lossfunctions.tumblr.com/. 
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Figure 25: Bias and variance in model validation. As in Figure 12, we can decompose the (squared, estimated) error 

into (squared) bias and (estimated) variance. For more details, see [1]. 

 
Source: Deutsche Bank Quantitative Strategy 

 

Figure 26: Error of a penalized regression as the complexity of the model is allowed to increase, with actual data. 

There is not always a clear frontier between under- and overfit: here, the out-of-sample (red) error has no clear 

minimum. 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Cross-validation refers to variants of the fixed training/validation split: the 
training and validation sets are randomly selected several times, to provide a 
better estimate of the out-of-sample performance of the model. The most 
common is k-fold cross-validation: 

� Partition the dataset into k parts; 

� Use k−1 parts as a training set and the remaining part as a validation 
set: fit the model on the training set and estimate its performance on 
the validation set; 

� Do this k times; 

� Use the average performance as an estimate of the out-of-sample 
performance. 

That approach, with financial data, usually leads to models that are excessively 
complex, difficult to interpret and whose in- and out-of-sample performance 
differs wildly. It is a recipe to overfit the data. Indeed, it assumes that the 
validation set and the training set are independent: but since many financial 
quantities change very slowly with time, and do not vary much for stocks in 
the same sector or country, this is an unreasonable and dangerous assumption 
(Figure 27). That lack of independence is also the reason why algorithms 
supposedly robust to overfitting, such as random forests, can overfit (as we 
saw a few pages ago). 

In short: in finance, cross-validation does not work. 

 



30 September 2016 

Quantiles 
 

Page 38 Deutsche Bank AG/Hong Kong

 

 

 

 

Figure 27: In-sample performance of the XGBoost model, with hyperparameters fine-tuned using cross-validation: 

annual returns reach 90%, and the information ratio is 8.5. While the out-of-sample performance remains decent (15%, 

2.0, not shown on the plot), the difference casts doubts on the robustness of the resulting investment strategy. 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 

 

Since overfitting will occur, we need a way of identifying and correcting it. 

Some people suggest comparing the distribution of the results of the strategy 
in- and out-of-sample. However, as shown in Figure 24, we do expect the in-
sample returns to be higher, even if the model overfits the data as little as 
possible – the red curve is almost always above the blue one. 

Another idea is to try to interpret the model: if we understand what it does, 
and if it makes sense from a financial point of view, the model is unlikely to be 
overfitting. Unfortunately, this is only possible for interpretable models (there 
are very few of them) and requires human input for each model. 

One can also be more conservative and set the hyperparameters to values 
known (beforehand) to avoid overfitting: for instance, for penalized regression, 
one could stop on the regularization path once 10 variables have entered the 
model. Besides being purely empirical, that approach has a few drawbacks: 
not only is it almost guaranteed to underfit the data, it only works for 
hyperparameters with a regularizing effect – for instance, you cannot use it to 
choose the kernel in a support vector machine. 

 

Figure 28:  Performance of the 

XGBoost model, with 

hyperparameters fine-tuned using 

cross-validation.  

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg 
Finance LP, Deutsche Bank Quantitative Strategy 
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Practice  
In the second part of this report, we will use the algorithms introduced in the 
first part to combine the investment factors in our database (Figure 30 and 
Figure 33) and forecast future returns; we will evaluate the quality of these 
forecasts by using them to build a quintile long-short portfolio and by 
computing its out-of-sample information ratio. 

 

While this practice is common, this goes against some of the 
recommendations we made earlier. 

� We are forecasting returns, but we look at the information ratio of a 
strategy built from those returns, i.e., the model tries to optimize 
something that does not have a direct meaning, from a business point 
of view. This suboptimal approach has, however, a few advantages: 

� We can use off-the-shelf, efficient and reliable implementations of 
those algorithms; 

� Measuring the precision of the return forecasts is much faster 
than computing the performance of the resulting strategy: this 
significantly speeds up the optimization at the heart of those 
algorithms; 

� It may also have a regularizing effect, and reduce overfitting 

� Since there is no good alternative, we are using separate training and 
test sets. We will see that the resulting models do overfit the data: 
they combine and/or transform the investment factors in unnatural 
and potentially dangerous ways, even if it seems beneficial out of 
sample. 

Here is the structure of this second part. 

� We first examine possible transformations of the input data, before 
estimating the model: should we winsorize, quantize, normalize, 
uniformize? Should we do this for both the predictors and the variable 
to predict? 

� We then define a benchmark model, to check how much, if at all, 
machine learning improves on simplistic models. 

� After those preliminaries, we examine the machine learning algorithms 
introduced in the first part, and focus on the choice of 
hyperparameters. 

We will see that the traditional machine learning approach, splitting 
the data into training and validation sets (or into in- and out-of-sample 
periods), to choose the best hyperparameters, gives very good out-of-
sample performance, but very suspicious models – we will rein in the 
overfitting zeal of the algorithms by requiring that the models remain 
interpretable. 
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� Following this idea, we also add one more model: a linear regression, 
but with a constraint on the sign of the coefficients dictated by our 
investment knowledge; 

� Finally, we compare all those models: the lasso and boosting have a 
comparable performance, but are outranked by the constrained 
regression; we also explain this difference. 

� In a conclusion, we lay out the recipe for machine-learning-based 
model construction, repeat our warning about the blind use of 
machine learning tools in finance, but also, on a more positive note, 
highlight possible uses of those tools. 
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Data pre-processing 

Data 
In the following pages, we consider the Japanese equity market (proxied by 
the S&P BMI Japan constituents) as an example. Our usual investment factors 
(details on the next pages) are stock characteristics commonly used to select 
stocks. The data is monthly, and the portfolios rebalanced every month. We 
used 2000–2011 as in-sample period, and 2012–present as out-of-sample. We 
did not use the 1990s because some of our investment factors had too little 
coverage (Figure 31 and Figure 32). 

Figure 34 to Figure 39 show the performance of quintile portfolios, built by 
ranking stocks according to those signals; the first quintile (low values) is in 
red, the fifth (high values) in blue, and the corresponding long-short portfolio 
(long the fifth quintile, short the first) in black. 

Figure 40 shows the relation between each of those factors and forward 
returns – those relations need be neither linear nor even monotonic. 

Figure 29: Universe size and composition 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 30: Investment factors 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 31: Coverage.  Missing values are in grey, zeroes in light blue, non-zero values in dark blue. 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 32: Coverage 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 33: Minimum spanning tree computed from the median cross-sectional correlation between our investment 

factors 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 34: Performance of the raw investment signals 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 

 



30 September 2016 

Quantiles 
 

Deutsche Bank AG/Hong Kong Page 47

 

 

 

Figure 35: Performance of the raw investment signals 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 36: Performance of the raw investment signals 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 37: Performance of the raw investment signals 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 38: Performance of the raw investment signals 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 39: Performance of the raw investment signals 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 

 

 



30 September 2016 

Quantiles 
 

Page 52 Deutsche Bank AG/Hong Kong

 

 

 

Figure 40: Relation between each variable (horizontal axis) and 1-month forward returns (vertical axis, average median 

in each vigintile) 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Missing values 
There are three types of missing values (Figure 41: The different types of 
missingness, as graphical models): 

� Missing completely at random (MCAR): missingness is independent of 
everything else; 

� Missing at random (MAR): missingness may depend on the other 
predictors but, conditioned on the other predictors, neither on the 
(unknown) missing value nor on the value of the variable to predict; 

� Not missing at random (NMAR): missingness is informative; it may 
depend on the (unknown) missing value or on the variable to predict, 
even if we condition on the other predictors. 

Figure 41: The different types of missingness, as graphical models 

Source: Deutsche Bank Quantitative Strategy 

There are many ways of dealing with missing values. 

There are few of them, but one can choose algorithms that deal with missing 
values. Decision trees and most tree-based algorithms readily accept missing 
values: if the variable used in a node is missing, the algorithm simply takes 
both branches at the same time – in the end, it does not reach a single leaf but 
a group of leaves, whose forecasts can be combined. However, even for 
algorithms that can deal with missing values, many implementations cannot. 

If there are few missing values, one can simply discard all observations with 
missing values. How much data can be thrown away depends a lot on the 
data: while discarding 5% of the data can already be worse than naive 
imputation, in some situations, the difference only becomes visible after 
removing 90% of the data... 

A popular approach is to “impute” the missing values. For many people, this 
means replacing the missing values with the most likely value, in some sense: 
this could be the overall mean or median of the variable, or some forecast of 
that value from the other, non-missing variables. 

To see the problem with this “naive imputation” (imputation with the most 
likely value), imagine you are trying to compute the volatility of a time series of 
returns, half of which are missing. Replacing the missing values with the most 
likely value, i.e., with a constant, would significantly lower the volatility. Even 
when the problem is not that obvious, replacing missing values with a 
constant value usually leads to biased estimates. 



30 September 2016 

Quantiles 
 

Page 54 Deutsche Bank AG/Hong Kong

 

 

 

Instead of imputing the missing values with a single value, we can replace the 
missing values with a distribution – in practice, a very small sample from that 
distribution (1 to 5 observations) is sufficient. This is justified if the data is 
MCAR or MAR (in the latter case, that distribution should be conditional on the 
values of the other variables). 

Since we can rarely assume that the data is missing at random, we can also 
add a binary variable indicating whether the value was missing. This ensures 
that we do not discard any piece of information. 

With the dataset used in this report, we cannot discard observations with 
missing values: some of the variables are not available before 2006. For the 
sake of simplicity, we will use naive imputation with the median of each 
variable, computed separately for each date. 
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Data preprocessing: predictors – should we transform the data? 
Figure 42 shows possible transformations of the data, taking one of the 
variables, a dividend yield, as example. We can see that the raw data presents 
outliers, is skewed, and zero-inflated. Since we transform the data 
independently at each date, the peak at zero becomes a bit blurry. If we were 
willing to examine the variables one by one, we could manually identify those 
that are zero-inflated and transform them accordingly, but, given the large 
number of variables, we prefer to treat them all in the same way. 

Figure 43 shows the effect of transforming the predictors on the performance 
of the quintile portfolios built using a penalized linear model (elastic net with 
10 variables). 

� Not pre-processing the data, i.e., mixing variables on different scales, 
leads to sub-optimal performance. 

� Simply rescaling the predictors, with an affine transformation to 
ensure they all have zero mean and unit variance, is also suboptimal: 
even if the first two moments match, the variables still have very 
different distributions – some are skewed, some are zero-inflated, 
many have fat tails, most have outliers. 

� Forcing the data to have a Gaussian distribution or quantizing it helps, 
but a uniform distribution seems to perform best. 

One reason uniformizing the predictors works best is that, by cutting the tails 
of the distribution, it prevents any observation from having an undue leverage 
on the resulting model. 
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Figure 42: Transformations one can apply to the predictors 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 43: Effect of pre-processing the predictors 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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More predictor transformations 
Many more transformations are possible. Here are a few. 

� One can make the predictors sector-neutral, by uniformizing them 
separately within each sector – Figure 43 suggests this significantly 
lowers the risk of the resulting strategy; 

� One can try to neutralize some undesirable risk factor f, by modeling a 
predictor x as a function of the risk factor, e.g., x = α + βf + ε, and 
replacing the predictor x with the corresponding residual ε. 

� Instead of (or in addition to) the residuals of those regressions, one 
could also use their coefficients, β. 

� Instead of normalizing the data cross-sectionally, one can normalize 
them in a time series fashion, e.g., by replacing xit with (xit −μit)/σit, 
where μit is the average of xis, s≤t, or with Φ-1(xit), where Φ-1 is an 
estimator of the cumulated distribution function of xis, s≤t. 

We will not investigate those transformations further in this report: see [3] for 
more details. 
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Data preprocessing: variable to predict – what should we predict? 
Figure 44 and Figure 45 show the effect of transforming the variable to predict, 
i.e., the 1-month ahead returns, (the model is still a penalized regression, 
selecting at most 10 variables). 

Most of the transformations perform slightly better than the raw returns, with 
no striking differences between them. 

The only exceptions are the binary variables,28 attempting to predict out-
performers (top 20%) or avoid under-performers (i.e., select stock in the top 
80%), for which the performance is significantly worse. 

While replacing continuous variables with binary variables discards potentially 
relevant information, that is not the main cause of that difference – indeed, 
predicting whether a stock will be in the top or bottom 50% does not lead to a 
big drop in performance. Here are two possible explanations. 

� Focusing on the top or bottom 20% creates unbalanced classes, which 
can make classification problems harder [8]. 

� To predict whether a stock will be in the top quintile, most algorithms 
will start to notice that stocks with high volatility are likely to remain in 
the top or bottom quintile and try to slightly improve, if possible, this 
risky strategy. This is a problem we have mentioned earlier: we should 
try to optimize something that makes sense from a business point of 
view. What makes sense, in portfolio construction, is an investment 
strategy with good returns and low risk: we should be maximizing the 
strategy returns and minimizing its risk. Predicting whether a stock 
will be in the top (or bottom) quintile is too far away from that goal. 

 

 

                                                           

28 We used a penalized logistic regression for binary variables. 
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Figure 44: Effect of pre-processing the variable to predict: transforming the variable to predict seems beneficial, except 

for discretization; in particular, creating unbalanced classes leads to bad performance.  

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 45: Effect of pre-processing the variable to predict: the results are similar if we try to predict 3-month-ahead 

returns instead of 1-month-ahead returns. 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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The next table summarizes the effect of those transformations, on either the 
predictors or the variable to predict or both. In the rest of this report, we will 
uniformize everything – but, if you wanted to invest in those strategies, 
neutralizing the effect of the sector may lead to an even better performance. 

Figure 46: Out-of-sample performance of a penalized regression 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Ties 
Ties can appear in the input or the output of a model and, in both cases, they 
pose problems. We have already seen that ties, and in particular unbalanced 
discrete variables, pose problems in the variable to predict. 

Figure 48 shows that some of our predictors are discrete: for instance, the 
Piotroski signal is a sum of binary variables and can only take 9 possible 
values. Attempting to build quintile portfolios from those 9 values (top plots) 
gives unbalanced and possibly empty portfolios. Using those 9 values to build 
9 portfolios still gives unbalanced portfolios: the extreme values are quite rare. 
Those discrete values also pose problems when fed to machine learning 
algorithms: most algorithms prefer continuous variables. 

Ties can appear in the output, as well: some machine learning algorithms, in 
particular those based on trees, can produce a lot of ties, which can pose 
problems when building quintile portfolios, as shown on Figure 47. 

To avoid those problems, the best is to check where those ties come from – 
often, they are caused by excessive rounding, and can easily be avoided. If this 
is not possible, one can add a small amount of noise to discrete signals, just 
enough to avoid duplicated values – this does not fix the problem, but may be 
sufficient to hide it. 

Figure 47: Shallow or unbalanced trees generate a lot of ties, and unbalanced or empty quintile portfolios. 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 48: Some of our investment signals are discrete 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Estimation period 
In finance, one often chooses an “in-sample” period to estimate the model and 
an “out-of-sample” period to assess its performance. This clearly highlights if 
the model overfits the data (figure 18). 

Alternatively, one can estimate the model on a moving window, of various 
sizes, or even use an expanding window.  Figure 49 shows the performance if 
the model (here, a penalized regression, selecting at most 10 variables) is 
estimated on a 3-year moving window, or on an expanding window; 29  
Figure 50 shows the risk-return profile as we change the window size: larger 
windows lead to higher returns and lower risk. 

Figure 49: Penalized regression, since 1990, with a 3-year or expanding window. 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 

                                                           

29 For most models, it is also possible to use exponentially decaying weights. 
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Figure 50: How the window size affects the performance of the strategy 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Regimes 
To see if there are different “regimes” in the data, to measure how similar the 
in- and out-of-sample periods are, and to assess how diverse the in-sample 
period was, we can look at a recurrence plot [30, 38] of the cross-sectional 
rank correlation matrices between the factors. Figure 51 plots the distances 
between those correlation matrices, with black corresponding to short 
distances, i.e., similar periods. We can see that: 

� The period from 2000 to 2009 was relatively uniform, and similar to 
2011–present; 

� The two years 2009–2010 stand out; 

� The previous period, 1990–2000 was significantly different and 
heterogeneous. 

� We can also notice annual patterns, especially in the 1990s, reflecting 
the fact that many of the variables only change once a year. 
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Figure 51: Recurrence plot. Dark areas correspond to similar periods. The second plot is the upper left half of the first 

one, rotated. 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Looking for the best model 

Baseline model 
Before trying all the models we can think of and the latest machine learning 
fads, we need some baseline model, to make sure that those fancy algorithms 
indeed add something to simplistic approaches. We will use an unweighted 
average of the uniformized investment signals (taking into account the 
direction in which they are supposed to be used: for instance, measures of risk 
enter this average with a negative sign). Figure 52 shows the performance of 
this model. 

This is just a baseline model: the performance is supposed to be neither great 
nor consistent – since the factors came from the literature and are known to 
have some predictive power on future returns, we expect it to be positive, on 
average, but not much more. Indeed, the information ratio is a mediocre 0.5 
and the strategy presents worrying drawdowns. 

Figure 52: Baseline model: unweighted average 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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False start 
Since there are dozens or hundreds of machine learning models [14, 43], we 
were first tempted to try them all. We have selected the models from the caret 
R package [23], but limited ourselves to models that could be fitted in a 
reasonable amount of time. To limit computation time further, we have used 
the default parameters for all those models. 

We ended up with the following models (there are many duplicates, i.e., 
different implementations of the same algorithm, usually with different default 
hyperparameters): 

� Linear models: lm, glm, bayesglm, nnls (non-negative least squares); 

� Penalized linear models (lasso, elastic net): enet, glmnet, lars, lars2; 

� Linear models with variable selection: leapBackward, leapForward, 
leapSeq; 

� Principal component regression, partial least squares: pcr, simpls, 
kernelpls; 

� Decision trees: ctree, ctree2, rpart, rpart1SE, rpart2; 

� Regression trees: earth, gcvEarth; 

� Boosting: blackboost, BstLm, bstTree, gamboost, gbm, glmboost, 
LogitBoost; 

� Neural networks: nnet, dnn; 

� Self-orgamizing maps (SOM): bdk (bidirectional Kohonen maps map x 
and y to the same space, alternating x and y during training), xyf (X-Y-
fused SOM concatenates x and y); 

� Linear discriminant analysis: lda, Mlda, sda (shrinkage LDA, high-
dimensional LDA), sparseLDA. 

With the exception of Kohonen maps, these are all supervised learning 
algorithms, used to predict forward returns (or, for the classification 
algorithms, whether the forward returns will be above the median). 

Figure 53 shows that to a similar but non-worrying extent, all those algorithms 
overfit the data (the in-sample performance is better than the out-of-sample 
one) and that the out-of-sample volatility is much lower than the in-sample one 
(this may be due to the fact that the in-sample period contains the global 
financial crisis, though, as suggested by Figure 54). 

Figure 55 and Figure 56 suggest that, without any hyperparameter tuning, the 
best models are the linear ones – in particular, ordinary least squares, despite 
overfitting the data, performs well. This is doubly worrying: we do not want to 
overfit the data, and we want to improve on linear models. 

Figure 57 and Figure 58 show the performance in the volatility×return space.  
We can see that the quintile portfolios are ordered as expected, that the long-
short portfolios have a similar information ratio but a lower volatility, and that 
linear models, neural nets, penalized models and boosting perform best.  
Figure 59 and Figure 60 provide the actual numbers. 
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In the rest of this report, we will focus on the hyperparameters of a handful of 
those models: penalized regression, decision trees, boosted trees and boosted 
splines. 

Figure 53: In- and out-of-sample performance: the in-sample performance is better (top), but the volatility is lower out-

of-sample (bottom) 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 54: The in-sample period was more volatile 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 55: Performance of a large number of algorithms 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 56: Out-of-sample performance of a large number of algorithms 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 57: In-sample performance of a larger number of algorithms. All the plots are identical, but they show or 

highlight different aspects of the data. Each dot corresponds to a portfolio. The first row shows all the portfolios; the 

second the fifth quintile portfolios, the third the long-short portfolios. 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 58: Out-of-sample performance of a larger number of algorithms 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 59: Performance (out-of-sample, long-short portfolio, sorted by decreasing information ratio) 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 60: Performance (out-of-sample, long portfolio, sorted by decreasing information ratio) 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Hyperparameter tuning: grid search 
Most of the algorithms we have described in the first part depend on a few 
parameters: the penalty scale(s) for the lasso, the penalty for misclassified 
observations for support vector machines, the number and depth of the trees 
for random forests, the step size and the number of steps for boosting – and 
some implementations provide even more parameters to fine-tune. 

While those “hyperparameters” may seem innocuous, some of them turn out 
to have a huge impact on the performance of the models – and it is rarely 
obvious which ones do. It is therefore important to fine-tune machine learning 
algorithms by carefully choosing those parameters. 

Let us take the lasso or, more precisely, the elastic net, as an example. There 
are two parameters: 

� λ≥ 0 is the amplitude of the penalty; 

� α ∈ [0,1] is the balance between the L2 and L1 penalties, 
corresponding to α = 0 and α = 1 respectively. 

Since λ is not easy to interpret, we can try to use the number n of variables 
selected by the model instead. 

In Figure 61, we use a grid search30 to optimize the out-of-sample information 
ratio, as α and the number of variables selected varies. The maximum is 
obtained for α = 0.5 and 26 variables. We also notice that α does not seem to 
play a big role. In this plot, we have limited ourselves to 30 variables, to ensure 
that the model remains easy to interpret. 

Figure 62 shows the whole regularization path: if we regularize even less, i.e., 
if we allow even more variables, the information ratio jumps from 1.2 to 1.85. 
From Figure 63, we see that we are basically fitting a linear model with 90% of 
our variables – that is a lot for a supposedly sparse model... 

                                                           

30 To be rigorous, we should not use two datasets, a training (in-sample) set and a validation (out-of-
sample) set, but three: we also need a validation set. The results we present are therefore not truly “out-
of-sample”. See [43] for more details. 
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Figure 61: Out-of-sample information ratio (IR) for the elastic net models, as a function of α and the number of 

variables selected. Note that α = 0 is missing from the plot: it corresponds to the ridge regression, which has no 

sparsifying effect. 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 

 

Figure 62: Out-of-sample information ratio (IR) for the elastic net models for the whole regularization path. Here, k = − 

log λ, up to an additive constant; λ varies approximately from 1 to 10⁻6. 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 63: Elastic net regularization paths, from ridge regression (α=0) to the lasso (α=1).  

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 

 



30 September 2016 

Quantiles 
 

Page 82 Deutsche Bank AG/Hong Kong

 

 

 

Figure 64 shows the same results, with extra predictors containing nothing but 
noise (124 meaningful variables, uniformized, and 124 random uniform 
variables). The information ratio remains comparable, and almost all the noise 
variables are included in the model. 

Figure 64: Lasso with noise variables 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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How worrying is this? 

Having potentially irrelevant variables is actually not that worrying: if you want 
a lot of relevant variables in your model, it is inevitable that a few irrelevant 
ones sneak in.31 Since those extra variables contain mostly noise, they almost 
cancel each other out and have a small effect on the forecasts. 

While not worrying, those results are however disappointing: in this situation, 
i.e., when most of the predictors are relevant, when the variables are clean 
(outliers, etc. disappeared when we uniformized the data), when they are 
sufficiently different, when there is enough training data for the number of 
variables available, when there is no underlying sparse model, the lasso does 
not improve on linear regression. 

But this means we have a problem: we saw in the first part (figures 10 and 11) 
that unpenalized regression had a tendency to include similar variables with 
large coefficients and opposite signs. The apparent good out-of-sample 
performance could be misleading... 

 

 

 

                                                           

31 There is a similar problem in biology: when testing tens of thousands of genes, we have to accept false 
positives – but we can control the false discovery rate (FDR). 
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One way of ensuring that the model does not overfit the data is to check if we 
can interpret it. In particular, we know the direction in which each factor 
should enter the model: for instance, earnings yield should have a positive 
influence on future returns while volatility should have a negative one. 

We find that unexpected signs start to appear after around 20 variables  
(Figure 65): we can therefore consider the 20-variable model “safe” and the 
less penalized ones “suspicious”. 

Figure 65: Weights for a penalized regression, after some of the coefficients have appeared with an unexpected sign 

(red) 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Decision trees 
For decision trees, we only let one parameter vary, the maximum tree depth 
(Figure 66): the performance increases as the tree is allowed to grow larger, 
and then stabilizes (the default is not to limit the tree size). However, it 
remains... negative. 

While decision trees are valuable when you want interpretable models, or an 
interpretable approximation of a model, we cannot recommend them for 
general use, especially for regression problems. 

Figure 66: Out-of-sample information ratio (IR) for the decision tree models, as the depth of the trees increase. 

 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 

We did not do any hyper-parameter fine-tuning for random forests and support 
vector machines [29] because fitting those models takes a very long time. 
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XGBoost 
Let us now examine XGBoost. Figure 67 shows the out-of-sample information 
ratio (IR) for various combinations of the hyperparameters: step size, number 
of iterations and tree depth. 

� The information ratio (IR) culminates at 1.45;32  

� The optimal tree depth seems to be 2 or 5 (2 may be safer). 

� The results are very noisy. In particular, we expect the performance to 
be approximately the same on the diagonals corresponding to a 
constant effective number of steps (product of the step size and the 
actual number of steps), and increase as the step size decreases: this 
effect is not clearly visible. 

Figure 68 shows the trees entering the best depth-2 model. While a single tree 
is interpretable, it is unclear whether 10 of them remain so. This lack of 
interpretability, combined with the noise in the out-of-sample performance, 
casts doubts on the reliability of the model. 

While XGBoost has a good reputation for classification problems, it may not be 
a good choice for regression problems. 

                                                           

32 The attentive reader will notice that the best information ratio is different from that announced in figure 
25: the grid was different (the maximum was obtained for 150 steps) and subsampling was used. 
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Figure 67: Out-of-sample information ratio (IR) for the xgboost models, as a function of the hyperparameters, step size 

(η), number of iterations (nround), and tree depth (from 1 to 6). The best value is highlighted. 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 68: Trees in the XGBoost model 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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MBoost 
Model boosting looks more promising (Figure 69). 

� As expected, the performance depends mostly on the effective 
number of steps (the product of step size and actual number of steps). 

� We were expecting the performance to increase along the diagonals 
as the step size decreases: this effect is not present, and a step size 
between 0.1 and 1 seems to be sufficient – the default is 0.01, and the 
usual advice is to decrease it further. 

� The best performance is obtained for a very large number of steps 
(5,000) – the default (framed in black, on the plot) is 100 steps. 

The grid search suggests that the best out-of-sample this model gives is 1.98 
(Figure 70). 

Figure 69: Out-of-sample information ratio (IR) for the mboost models, as a function of the hyperparameters 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 70: Performance of the best mboost model, in- and out-of-sample 

 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Since our boosting model uses 1-dimensional, non-linear models as base 
learners, we can check how variables enter the model and, as with the lasso, 
ensure that the model remains interpretable – we suspect that the best “out-of-
sample” numbers are excessive. 

Figure 71 shows some of the patterns we expect to see. 

Figure 71: Some of the variable transformations we expect to see in the mboost model 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 

Figure 72 shows how the first 12 variables enter the model: so far, so good. 

Figure 72: The first 12 variables to enter the mboost model (13 steps of size 0.5) 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 73 shows the variables in the model after 50 steps, with those entering 
the model in an unnatural way highlighted. The imaginative reader may be able 
to explain why those variables are transformed in these ways, but that task will 
require a lot of convincing and will become increasingly harder as the number 
of steps increases. 

Figure 73: Components of the mboost model, after 50 steps of size 0.5; variables transformed in a suspicious way are 

highlighted 

 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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In case we have not frightened you enough, Figure 74 shows some of the 
transformations selected by another boosting model (using splines with 20 
knots, the default for the tools we used, instead of 5, as in the rest of this 
document), with apparent good performance – the out-of-sample information 
ratio was 4.5. 

Figure 74: Some of the suspicious variable transformations suggested by a model with an even better out-of-sample 

performance than that presented in the text (50,000 steps of size 1, with 20-knot splines): the out-of-sample 

information ratio was 4.5... 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Constrained regression 
Since we are concerned with the interpretability of the models, let us go back 
to basics and consider linear models. Our baseline model imposed not only the 
sign of the coefficients, but also their values (+1 or −1).  Instead, we can only 
set the signs and let the values vary: this is a constrained regression. 

                                        

Figure 75 and Figure 76 show that the performance is decent – better than 
what we have seen so far. 

Figure 75: Constrained regression 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 

 

Figure 76: Out-of-sample performance of the models examined 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 

 

 



30 September 2016 

Quantiles 
 

Deutsche Bank AG/Hong Kong Page 95

 

 

 

This good performance can be explained as follows. 

Sign-constrained regression and lasso are both constrained regressions: the 
shape of the constraints differ (Figure 77), but they have a similar regularizing 
effect. However, while the lasso constraints are not informative (they shrink 
the coefficients towards zero), the sign constraints are informative: they bring 
extra information into the model. In addition, the constrained regression is 
allowed to use as many variables as it wants (but the constraints still have a 
sparsifying effect: it uses less than half). 

Figure 77: Constraints used in the lasso (left) and in the sign-constrained regression (in dimension 2) 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 

Figure 78 and Figure 79 show the performance of models fitted in different 
training sets: our in-sample period (2000–2011 – only investible from 2012 
onwards), a 3-year moving window (investible, reactive to market changes, but 
too noisy) and an expanding window (investible and stable). 

Figure 78: Difference between the in-sample performance and that of an investible strategy 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 79: Performance, in different periods, with different training samples: 2000–2011 (the in-sample period used in 

the rest of the report), a 3-year moving window (the model is re-evaluated once a year), an expanding window. 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 80 shows that the largest contributions are stable over time and come 
from value, risk, quality and sentiment factors.  

Figure 81 shows the variables with the largest weights. 

Figure 82 to Figure 84  show how the individual weights change with time. 

Figure 80: Contributions to the constrained linear model, over time: the weights are stable, as one would expect from a 

model fitted on an expanding window. The glitch around 2000 is due to the absence of many of the variables before 

that: for the first few months after they appear, there is not enough history to have stable weights. The top plot uses 

an expanding window, the bottom a 3-year moving window: the contributions are similar, but the 3-year moving 

window model is more volatile. 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 81: Largest weights in the sign-constrained model (expanding window) 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 82: Weights of the individual factors (less important variables in grey) 

 

 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 83: Weights of the individual factors 

 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 84: Weights of the individual factors 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 85 shows the current net sector composition of the long-short portfolio: 
Hardware, Banks, Automobiles and Materials are net long, while Software, 
Pharmaceuticals, Retail and Consumer services are net short – the model has 
significant sector biases. 

Figure 85: Sector exposure of the constrained linear model, over time 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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Figure 86 and Figure 87 show that the mboost model (here, estimated on our 
in-sample period, 2000-2011), gives similar results 

Figure 86: Contributions to the mboost model, over time 

 
Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 

 

Figure 87: Sector exposure of the mboost model, over time 

Source: Factset, S&P, IBES, MarkIt, Thomson Reuters, Bloomberg Finance LP, Deutsche Bank Quantitative Strategy 
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When we started to write this report, we wanted to show two things: 

� First, that machine-learning tools needed extra care in finance, that the 
traditional ways of preventing overfitting were ineffective; 

� Second, that machine-learning tools were superior to older, statistical 
methods. While we confirmed the first point, the second is... still a 
work in progress. 
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Conclusion   
 

In this report, we have examined a few machine learning algorithms (mostly 
penalized regression, decision trees, generalized additive models and boosting 
– but we also mentioned random forests and support vector machines) and 
laid out the main steps to apply them to financial data: 

� Use a baseline model, e.g., a single financial ratio (e.g., E/P), or an 
unweighted average of a few known investment signals; 

� Split your training data in at least two (and ideally three) samples: one 
to fit the model, one to fit the hyperparameters (and one to see how 
the final model fares); once you have selected your final model, re-
estimate it on the whole dataset before using it; 

� Do something with the missing values: use an algorithm that accepts 
them, or discard the corresponding observations, or replace them with 
some forecast or a random value; 

� Avoid predictors with ties; 

� At least uniformize the predictors – but see [3] for more options; 

� Uniformize the variable to predict; 

� Fine-tune the hyperparameters of your model of choice using grid 
search or, better, random search or Bayesian optimization; do not look 
for a single best model, but a family of increasingly better (and 
complex) models – a regularization path; 

� The best model still overfits the data (the difference between in- and 
out-of-sample performance is too large; parts of the model that should 
be interpretable are not): constrain it further, i.e., choose one earlier on 
the regularization path; 

� If you can find several unrelated promising models, combine them. 

In particular, traditional ways of preventing overfitting are ineffective, or even 
dangerous, in finance. 

While, contrary to our expectations, we have not retained any machine 
learning model, they still have some value and can help understand the data 
better:  

� The lasso can be used to select variables, if you want a small number 
of variables, or if you know that many of the variables you have are 
irrelevant but do not know which ones; 

� Likewise, boosting, with 1-variable non-linear models, can be used to 
select transformations of the variables – those transformed variables 
can then be included in other models; 

� Decision trees do not have a very good predictive power, but they are 
eminently interpretable: they can be used to make sense of complex, 
black-box models. 
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As a last note, our stance on machine learning algorithms may have been too 
conservative: 

� Often, apparently insignificant parameters of those algorithms play a 
big role: it may be possible to squeeze more performance out of these 
algorithms; 

� Is our rejection of un-interpretable models with apparent good out-of-
sample performance legitimate? Could it be that those models 
capture something un-interpretable but investable? We do not have 
the answer to that question (yet). 

 

In forthcoming reports, we will continue our exploration of machine learning 
and plan to examine, among other topics: 

� More models, in particular neural networks; 

� Ensembling; 

� Bayesian optimization for hyper-parameter fine-tuning; 

� Other uses of Bayesian optimization, for instance to directly optimize 
the information ratio of a strategy, instead of the quality of the return 
forecasts. 
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