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ABSTRACT 
 
In this paper we address the problem of selection bias under multiple testing in the context of 
investment strategies. We introduce an unsupervised learning algorithm that determines the 
number of effectively uncorrelated trials carried out in the context of a discovery. This estimate 
is critical for estimating the familywise false positive probability, and for filtering out false 
investment strategies.  
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1. INTRODUCTION 
Finance lacks laboratories where experiments can be conducted while controlling for 
environmental conditions. For example, we cannot test the cause of the Flash Crash by 
reproducing the events of that date, while subtracting the trades of individual participants in 
order to derive a cause-effect mechanism. This elementary exercise, so common in Physics 
laboratories such as Berkeley Lab or CERN, is unavailable to financial researchers (López de 
Prado [2017]). 
 
In absence of this essential scientific tool, financial researchers often resort to conducting 
backtests, which are simulations of how an investment portfolio would have performed under a 
particular historical scenario. The performance of such portfolio is often measured in terms of 
the Sharpe ratio (SR), which has become de facto the most popular investment performance 
metric. The distributional properties of the SR are well-known, allowing researchers to use this 
statistic to test the profitability of a strategy for a given confidence level (Lo [2002], Bailey and 
López de Prado [2012]). 
 
A false positive occurs when a statistical test rejects a true null hypothesis. The probability of 
obtaining a false positive is set by the significance level (usually 5%). This false positive 
probability does not remain constant, and it necessarily increases as more than one test is 
conducted on the same data. The implication is that, applying the same rejection threshold for the 
null hypothesis under multiple testing will grossly underestimate the probability of obtaining a 
false positive. The practice of carrying out multiple tests without adjusting the rejection threshold 
is so widespread and misleading that the American Statistical Association considers it unethical 
(American Statistical Association [1997]). In particular, if we test multiple strategies on the same 
data, we should demand an increasing SR for the same false positive probability (Bailey et al. 
[2014a], Bailey and López de Prado [2014]).  
 
Backtest overfitting occurs when a researcher makes a false discovery (finds a false positive) as a 
result of selecting the best outcome out of a multiplicity of backtests conducted on the same 
dataset. As soon as a researcher executes more than one backtest on a given dataset, backtest 
overfitting is taking place with a non-null probability. The goal of this paper is to provide a 
practical methodology that will allow researchers to compute and report the probability that an 
investment strategy is a false positive, while controlling for selection bias under multiple testing 
(SBuMT). 
 
The rest of the paper is organized as follows: Section 2 reviews the literature. Section 3 lists the 
contributions made by this paper. Section 4 describes the distributional properties of the SR. 
Section 5 computes the probability that a strategy is a false positive in a single-test setting. 
Section 6 states the false strategy theorem. Section 7 explains how to compute the probability 
that a strategy is a false positive in a multiple-test setting. Section 8 provides practical solutions 
to the estimation of the probability of a false positive. Section 9 demonstrates empirically the 
accuracy of these practical solutions. Section 10 summarizes our findings. 
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2. REVIEW OF THE LITERATURE 
In a series of papers, William Sharpe introduced the notion of measuring the performance of 
portfolio managers in terms of their risk-adjusted returns (Sharpe [1966, 1975, 1994]). This 
makes intuitive sense, since the portfolio that maximizes returns subject to a level of risk is a 
member of the Markowitz’s efficient frontier. This performance measure quickly grew in 
popularity and became by far the premier statistic used to compare the performance across 
portfolio managers (Bailey and López de Prado [2012]). 
 
Lo [2002] studied the distributional properties of the SR. He concluded that, under the 
assumption of independent and identically distributed (IID) Normal returns, the SR estimator 
follows a Normal distribution with mean SR and a standard deviation that depends on the very 
value of SR and the number of observations. Mertens [2002] found that the Normality 
assumption on returns could be dropped, and still the estimated SR would follow a Normal 
distribution. Christie [2005] derived a limiting distribution that only assumes stationary and 
ergodic returns, thus allowing for time-varying conditional volatilities, serial correlation and 
even non-IID returns. Surprisingly, Opdyke [2007] proved that the expressions in Mertens 
[2002] and Christie [2005] are in fact identical. Bailey and López de Prado [2012] derived the 
probability that the true SR exceeds a given benchmark level, under non-Normal returns. 
 
Until 2014, all estimates of the SR assumed that returns were the result of a single trial. In a 
world where researchers routinely conduct millions of backtests, clearly that is an unrealistic 
assumption. To address this problem, Bailey and López de Prado [2014] introduced the deflated 
Sharpe ratio (DSR), which computes the probability that the true SR is positive while controlling 
for SBuMT. 
 
In this paper we focus on Type I errors (false positives) rather than Type II errors (false 
negatives), because the former are actual economic losses, whereas the latter are opportunity 
losses. A hedge fund manager has a vested interest in minimizing Type II errors, while he 
receives a free call option on Type I errors. In other words, investors participate in the upside and 
downside, while managers participate only in the upside. Therefore, investors may adopt a 
“safety first” principle and concentrate on Type I errors, knowing that financial incentives take 
care of the Type II errors. For a treatment of both errors, see Harvey et al. [2018b] and López de 
Prado and Lewis [2018]. 
 
In general terms, the statistics literature on multiple testing works with two different definitions 
of Type I error: First, the Familywise Error Rate (FWER) is defined as the probability that at 
least one false positive takes place. FWER-based tests are designed to control for a single false 
positive (Holm [1979]). Second, the False Discovery Rate (FDR) is defined as the expected 
value of the ratio of false positives to predicted positives. FDR-based tests are designed to 
generate Type I errors at a constant rate, proportional to the number of predicted positives 
(Benjamini and Hochberg [1995], Benjamini and Liu [1999], Benjamini and Yekutieli [2001]). 
In most scientific and industrial applications, FWER is considered overly punitive, and authors 
prefer to use FDR. For example, it would be impractical to design a car model where we control 
for the probability that a single unit will be defective. However, in the context of finance, we 
advise against the use of FDR. The reason is, an investor does not typically allocate funds to all 
strategies with predicted positives within a family of trials, where a proportion of them are likely 
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to be false. Instead, investors are only introduced to the single best strategy out of a family of 
millions of alternatives. Following the car analogue, in finance there is actually a single car unit 
produced per model, which everyone will use. If the only produced unit is defective, everyone 
will crash. For example, investors are not exposed to the dozens of alternative model 
specifications tried by Fama and French. They have only been told about the one specification 
that Fama and French found to be best, and they have no ability to invest in their alternative 
models that passed individual statistical significance tests. Hence we argue that, in the context of 
financial applications, the more realistic Type I error definition is to control for a single error, not 
for an error rate. Accordingly, the procedure explained in this paper applies a FWER definition 
of Type I error. 
 
 
3. OUR CONTRIBUTIONS 
Bailey and López de Prado [2012, 2014] and Bailey et al. [2014] introduced the False Strategy 
theorem (see Section 6.1), and demonstrated how a SR estimate can be used to reject false 
discoveries under non-Normal returns while controlling for SBuMT. Critically, this theorem 
required the estimation of two meta-research variables, in the sense that they are variables related 
to the research process itself, rather than the outcome of the research. These two meta-research 
variables in question are: (1) The estimation of the number of effectively uncorrelated tests 
(E[𝐾]); and (2) the variance of the SR across the K effectively uncorrelated tests (E[V[{𝑆𝑅𝑘}]]). 
With the help of both variables, we can discount the likelihood of “lucky findings”, that is, 
random patterns that appear naturally in the data but are meaningless. In this paper we provide 
practical solutions to the estimation of these two critical meta-research variables. 
 
Important papers on this subject, published by Campbell Harvey and his coauthors, include 
Harvey et al. [2015, 2016, 2018a]. Their work shares similarities with ours, particularly as it 
relates to our concern that the practical totality of academic papers published in financial 
economics do not control for SBuMT, and the implication that most discoveries in empirical 
finance are likely to be false. Despite these similarities, our goals and mathematical approaches 
are different, as explained in Harvey et al. [2015, Section 3.4].  
 
Particularly relevant is Harvey et al. [2015], which applies the Šidák correction (Šidák [1967]) to 
estimate the probability of observing a maximal SR that exceeds a given threshold. Their key 
assumptions are that returns are Normally distributed, and that trials are either independent or 
there is a constant average correlation between trials. Our method is different in three ways: 
 

1. We do not assume that returns follow a Normal distribution. Empirical studies show 
that hedge fund returns exhibit substantial negative skewness and positive excess 
kurtosis. Wrongly assuming that returns are Normal underestimates the false positive 
probability (see Section 5). Our derived probability of a false discovery incorporates 
information regarding the trials’ sample length, and the skewness and kurtosis of the 
observed returns. 

2. Our method is based on Extreme Value Theory, rather than Šidák’s correction. We 
derive the probability of a false positive adjusted for SBuMT through the direct 
application of the False Strategy theorem (see Section 6 herein). Notably, the False 
Strategy theorem uses the variance of the trials’ SRs to accurately estimate the threshold 
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that the maximal SR must exceed to be statistically significant (see Section 6.2). 
Incorporating this variance information is critical when returns are not drawn from an IID 
Normal distribution (see Section 4).  

3. We do not assume a constant average correlation across trials. A family of backtests 
often contains heterogeneous strategies. Trials that belong to the same strategy tend to be 
highly correlated among themselves, while trials that belong to different strategies tend to 
exhibit a lower correlation. This clustering of trials around heterogeneous strategies leads 
to a hierarchical structure, which can be highly irregular and complex. Assuming a 
constant correlation across all trials fails to recognize that hierarchical structure, biasing 
the estimates of the number of independent trials (E[𝐾]) and the false positive 
probability. 

 
Generally speaking, our approach is data-intensive and closer to the machine learning literature, 
whereas Harvey et al.’s is closer to the econometrics literature. We advise readers to become 
familiar with both, as they can be seen as complementary. In particular, our unsupervised 
learning method for estimating the number of effectively uncorrelated tests (E[𝐾]) should be 
useful to both approaches. 
 
 
4. THE NORMALITY OF THE SHARPE RATIO 
Consider an investment strategy with excess returns (or risk premia) {𝑟𝑡}, 𝑡 = 1,… , 𝑇, which 
follow an IID Normal distribution, 
 

𝑟𝑡~𝒩[𝜇, 𝜎2] 
 
where 𝒩[𝜇, 𝜎2] represents a Normal distribution with mean 𝜇 and variance 𝜎2. The SR (non-
annualized) of such strategy is defined as 
 

𝑆𝑅 =
𝜇
𝜎

 
 
Because parameters 𝜇 and 𝜎 are not known, SR is estimated as 
 

𝑆�̂� =
E[{𝑟𝑡}]

√V[{𝑟𝑡}]
 

 
Under the assumption that returns follow an IID Normal distribution, Lo [2002] derived the 
asymptotic distribution of 𝑆�̂� as 
 

(𝑆�̂� − 𝑆𝑅)
𝑎
→ 𝒩 [0,

1 + 1
2 𝑆𝑅2

𝑇
] 

 
Equivalently, under the assumption that returns follow an IID Normal distribution, Harvey et al. 
[2015] transform 𝑆�̂� into a t-ratio, which follows a t-distribution with 𝑇 − 1 degrees of freedom. 
In this paper we refrain from following that approach, as empirical evidence shows that hedge 
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fund strategies exhibit substantial negative skewness and positive excess kurtosis (among others, 
see Brooks and Kat [2002], Ingersoll et al. [2007]). Wrongly assuming that returns follow an IID 
Normal distribution can lead to a gross underestimation of the false positive probability. 
 
Under the assumption that returns follow an IID non-Normal distribution, Mertens [2002] 
derived the asymptotic distribution of 𝑆�̂� as 
 

(𝑆�̂� − 𝑆𝑅)
𝑎
→ 𝒩 [0,

1 + 1
2 𝑆𝑅2 − 𝛾3𝑆𝑅 + 𝛾4 − 3

4 𝑆𝑅2

𝑇
] 

 
where 𝛾3 is the skewness of {𝑟𝑡}, and 𝛾4 is the kurtosis of {𝑟𝑡} (𝛾3 = 0 and 𝛾4 = 3 when returns 
follow a Normal distribution). Shortly after, Christie [2005] and Opdyke [2007] discovered that, 
in fact, Mertens’ equation is also valid under the more general assumption that returns are 
stationary and ergodic (not necessarily IID). The key implication is that 𝑆�̂� still follows a 
Normal distribution even if returns are non-Normal, however with a variance that partly depends 
on the skewness and kurtosis of the returns. In the next section we utilize this result to express 
the SR statistic in the probabilistic space. Such metric can be used directly to determine the 
probability that a discovery made after a single trial is a false positive. 
 
 
5. THE PROBABILISTIC SHARPE RATIO 
The probabilistic Sharpe ratio (PSR) provides an adjusted estimate of the SR, by removing the 
inflationary effect caused by short series with skewed and/or fat-tailed returns. Given a user-
defined benchmark level 𝑆𝑅∗, PSR estimates the probability that an observed 𝑆�̂� exceeds 𝑆𝑅∗. 
Following Bailey and López de Prado [2012], PSR can be estimated as 
 

𝑃𝑆�̂�[𝑆𝑅∗] = 𝑍

[
 
 
 (𝑆�̂� − 𝑆𝑅∗)√𝑇 − 1

√1 − �̂�3𝑆�̂� + �̂�4 − 1
4 𝑆�̂�2

]
 
 
 
 

 
where 𝑍[. ] is the CDF of the standard Normal distribution, T is the number of observed returns, 
�̂�3 is the skewness of the returns, and �̂�4 is the kurtosis of the returns. Note that 𝑆�̂� is the non-
annualized estimate of SR, computed on the same frequency as the T observations. For a given 
𝑆𝑅∗, 𝑃𝑆�̂� increases with greater 𝑆�̂� (in the original sampling frequency, i.e. non-annualized), or 
longer track records (T), or positively skewed returns (�̂�3), but it decreases with fatter tails (�̂�4). 
 
 
6. THE FALSE STRATEGY THEOREM 
For the reader’s convenience, in this section we will discuss the theorem needed to further adjust 
𝑃𝑆�̂� for the inflationary effect caused by SBuMT. A proof of this statement can be found in 
Bailey et al. [2014]. 
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Given a sample of IID-Gaussian Sharpe ratios, {𝑆�̂�𝑘}, 𝑘 = 1,… , 𝐾, with 𝑆�̂�𝑘~𝒩 [0, V[{𝑆�̂�𝑘}]], 
then 
 

E [max
𝑘

{𝑆�̂�𝑘}] (V[{𝑆�̂�𝑘}])
−1

2⁄ ≈ (1 − 𝛾)𝑍−1 [1 −
1
𝐾

] + 𝛾𝑍−1 [1 −
1
𝐾𝑒

] 

 
where 𝑍−1[. ] is the inverse of the standard Gaussian CDF, 𝑒 is Euler’s number, and 𝛾 is the 
Euler-Mascheroni constant. The implication is that, unless max𝑘{𝑆�̂�𝑘} ≫ E[max𝑘{𝑆�̂�𝑘}], the 
discovered strategy is likely to be a false positive. In Section 7 we will evaluate this likelihood. 
 
 
7. THE DEFLATED SHARPE RATIO 
In accordance with the previous result, we define the deflated Sharpe ratio (DSR) as the 
probability that the true SR exceeds a user-defined benchmark level 𝑆𝑅∗, where that level is 
adjusted to reflect the multiplicity of trials. Following Bailey and López de Prado [2014], DSR 
can be estimated as 𝑃𝑆�̂�[𝑆𝑅∗], where the benchmark SR (𝑆𝑅∗), is no longer user-defined. 
Instead, 𝑆𝑅∗ is estimated as 
 

𝑆𝑅∗ = √V[{𝑆�̂�𝑘}] ((1 − 𝛾)𝑍−1 [1 −
1
𝐾

] + 𝛾𝑍−1 [1 −
1
𝐾𝑒

]) 

 
where V[{𝑆�̂�𝑘}] is the variance across the trials’ estimated SR, K is the number of independent 
trials, 𝑍[. ] is the CDF of the standard Normal distribution, 𝛾 is the Euler-Mascheroni constant, 
and 𝑘 = 1,… , 𝐾. 
 
The rationale behind DSR is the following: Given a set of SR estimates, {𝑆�̂�𝑘}, its expected 
maximum is greater than zero, even if the true SR is zero. Under the null hypothesis that the 
actual SR is zero, 𝐻0: 𝑆𝑅 = 0, we know that the expected maximum SR can be estimated as the 
𝑆𝑅∗. Indeed, 𝑆𝑅∗ increases quickly as more independent trials are attempted (K), or the trials 
involve a greater variance (V[{𝑆�̂�𝑘}]). In order to reject the null hypothesis that the strategy is 
uninformed (𝐻0: 𝑆𝑅 = 0), the observed SR (𝑆�̂�) must be statistically significantly greater than 
the expected SR after controlling for SBuMT (𝑆𝑅∗). Thus, DSR gives us the confidence level, 
that is, the probability complementary to the false positive rate. For example, in order to reject 
the null hypothesis, 𝐻0: 𝑆𝑅 = 0, with a 5% significance level, the observed DSR must exceed 
0.95. 
 
 
8. PRACTICAL CONSIDERATIONS 
In practice, the estimation of the false positive probability requires the evaluation of six 
variables: 

1. 𝑆�̂� 
2. T 
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3. �̂�3 
4. �̂�4 
5. E[𝐾] 
6. E [V[{𝑆�̂�𝑘}]] 

 
Of these six variables, (1)-(4) are either directly observable or can be estimated from the selected 
strategy. However, (5)-(6) are meta-research variables, in the sense that they are intrinsic to the 
research process itself, and they cannot be estimated from the selected strategy. 
 
There are two major reasons why (5)-(6) are usually unknown. First, it is common for 
researchers to hide, not track, not report or underreport (5)-(6). The motivations may vary, and 
they could range all the way between negligence and outright fraud. Regardless of the 
motivations, the implication is that ignorance of (5)-(6) makes it impossible to assess whether a 
discovery is false. Second, even those careful and knowledgeable researchers who track every 
single trial that takes place face the problem that trials are not usually independent. The number 
of independent trials 𝐾 is less or equal to the number of trials N. In the following sections, we 
will show how (5)-(6) can be estimated in practice. 
 
8.1. ESTIMATION OF THE NUMBER OF CLUSTERED TRIALS, 𝐄[𝑲] 
While finding independent trials may not be feasible, given that likely all strategies will be 
dependent to varying degrees, we consider clustering the strategies and using those clusters as a 
proxy. To that end, our goal is to develop an algorithm that, given 𝑁 series, will partition them 
into an optimal number of 𝐾 subgroups, or clusters. Ideally, each cluster will have high intra-
cluster correlations and low inter-cluster correlations. We denote this algorithm ONC, since it 
searches for the optimal number of clusters within a correlation matrix. 
 
Given that our goal is to cluster correlated strategies, we first assume that we have a correlation 
matrix 𝜌 for our strategies, where 𝜌𝑖𝑗 is the correlation of the returns between strategies 𝑖 and 𝑗. 
Next, we need a metric for clustering the strategies, specifically one where higher correlations 
map to smaller (closer) distances. For this, we consider the proper distance matrix 𝐷, where 
 

𝐷𝑖,𝑗 = √1
2

(1 − 𝜌𝑖𝑗) 

 
for 𝑖, 𝑗 = 1,… ,𝑁. This definition of distance is a proper metric in the sense that it satisfies the 
four classical axioms: Non-negativity, identity, symmetric and sub-additivity. Furthermore, we 
wish to consider a more global distance rather than local distance for improved clustering. 
Therefore, our clustering will be performed on the final Euclidean distance matrix �̃� where 
 

�̃�𝑖,𝑗 = √∑(𝐷𝑖𝑘 − 𝐷𝑗𝑘)
2

𝑘
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In doing so, ONC works on a distance of distances (�̃�), rather than on a simple distance matrix 
(𝐷). The reason is, while 𝐷𝑖,𝑗 is a direct function of 𝜌𝑖𝑗 (a single correlation), �̃�𝑖,𝑗 incorporates 
information about the entire system, thereby reducing noise and adding robustness to the 
procedure (López de Prado [2016a]). 
 
With the above formed distance matrix �̃�, we next consider the clustering methodology. One 
possibility would be to use the K-means algorithm on our distance matrix �̃�. While K-means is 
simple and frequently effective, it does have two notable limitations: First, the algorithm requires 
a user-set number of clusters 𝐾, which is not necessarily optimal a priori. Second, the 
initialization is random, and hence the effectiveness of the algorithm is similarly random. 
 
In order to address these two concerns, we need to modify the K-means algorithm. The first 
modification is to introduce an objective function, so that we can find the “optimal 𝐾.” For this, 
we utilize the silhouette score introduced by Rousseeuw [1987]. As a reminder, for a given node 
𝑖 and a given clustering, the silhouette score 𝑆𝑖 is defined as 
 

𝑆𝑖 =
𝑏𝑖 − 𝑎𝑖

max{𝑎𝑖, 𝑏𝑖}
 

 
where 𝑎𝑖 is the average distance between 𝑖 and all other nodes in the same cluster, and 𝑏𝑖 is the 
smallest average distance between 𝑖 and all the nodes in any other cluster. Effectively, this is a 
measure comparing intra-cluster distance and inter-cluster distance. A 𝑆𝑖 = 1 means that node 𝑖 
is clustered well, while 𝑆𝑖 = −1 means that 𝑖 was clustered poorly. Our measure of quality 𝑞 for 
a given clustering is thus set to 
 

𝑞 =
E[{𝑆𝑖}]

√V[{𝑆𝑖}]
 

 
The second modification deals with K-mean’s initialization problem. At the base level, our 
clustering algorithm performs the following operation: First, we are given a 𝑁𝑥𝑁 correlation 
matrix 𝜌, from which we evaluate the distance matrices 𝐷 and �̃�. Second, we perform a double 
for…loop. In the first loop, we try different 𝑘 = 2,… ,𝑁 − 1 on which to cluster via K-means for 
one given initialization, and evaluate the quality 𝑞 for each clustering. The second loop repeats 
the first loop multiple times, thereby obtaining different initializations. Third, over these two 
loops, we select the clustering with the highest 𝑞. See Snippet 1 in the Appendix for an 
implementation of this operation in python. 
 
The third modification to K-means deals with clusters of inconsistent quality. The base clustering 
may capture the more distinct clusters, while missing the less apparent ones. To address this 
issue, we evaluate the quality 𝑞𝑘 of each cluster 𝑘 = 1,… , 𝐾 given the clustering and silhouette 
scores obtained from the base clustering algorithm. We then take the average quality �̅�, and find 
the set of clusters with quality below average, {𝑞𝑘|𝑞𝑘 < �̅�, 𝑘 = 1,… , 𝐾}. Let us denote as 𝐾1 the 
number of clusters in the set, 𝐾1 < 𝐾. If the number of clusters to rerun is 𝐾1 ≤ 2, then we return 
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the clustering given by the base algorithm. However, if 𝐾1 > 2, we rerun the clustering of the 
items in those 𝐾1 clusters, while the rest are considered acceptably clustered.  
 
We rerun the 𝐾1 clusters in a recursive manner, rerunning the clustering on 𝜌, restricted to the 
nodes in the 𝐾1 clusters. Doing so will return a, possibly new, optimal clustering for those nodes. 
To check its efficacy, we compare the average quality of the clusters to redo given the previous 
clustering to the average quality of the clusters given the new clustering. If the average quality 
improves for these clusters, we return the accepted clustering from the base clustering 
concatenated with the new clustering for the nodes redone. Otherwise, we return the clustering 
formed by the base algorithm. See Snippet 2 in the Appendix for an implementation of this 
operation in python. Exhibits 1 and 2 outline the structure of the ONC algorithm. 
 

[EXHIBIT 1 HERE] 
[EXHIBIT 2 HERE] 

 
8.2. ESTIMATION OF THE VARIANCE OF CLUSTERED TRIALS, 𝐄 [𝐕[{𝑺�̂�𝒌}]] 
Upon completion of the clustering above, ONC has successfully partitioned our 𝑁 strategies into 
𝐾 groups, each of which is construed of highly correlated strategies. In this section, our goal is to 
utilize the clustering to reduce the 𝑁 strategies to 𝐾 ≪ 𝑁 cluster-level strategies. Upon creation 
of these “cluster strategies,” we derive our estimate E [V[{𝑆�̂�𝑘}]] for each 𝑘 = 1,… , 𝐾. 
 
For a given cluster 𝑘, the goal is to form an aggregate cluster returns time series 𝑆𝑘,𝑡. This 
necessitates choosing a weighting scheme for the aggregation. We choose the minimum variance 
allocation, described in López de Prado [2016a], to mitigate the adverse effects of any strategies 
with larger variance. Let 𝐶𝑘 denote the set of strategies in cluster 𝑘, 𝑟𝑖,𝑡 the returns series for 
strategy 𝑖, Σ𝑘 the covariance matrix restricted to strategies in 𝐶𝑘, and 𝑤𝑘,𝑖, or 𝑤𝑘 in vector 
notation, the weight for strategy 𝑖 ∈ 𝐶𝑘. Then, we set 
 

𝑤𝑘 =
Σ𝑘

−11
1′Σ𝑘

−11
 

 
𝑆𝑘,𝑡 = ∑ 𝑤𝑘,𝑖

𝑖∈𝐶𝑘

𝑟𝑖,𝑡 

 
where 1 is the characteristic vector of 1s. A robust method of computing 𝑤𝑘 can be found in the 
Appendix. With the cluster returns time series 𝑆𝑘,𝑡 now computed, we estimate each SR (𝑆�̂�𝑘). 
However, these 𝑆�̂�𝑘  are not yet comparable, as their frequency of trading may vary. To make 
them comparable, we must first annualize each. Accordingly, we calculate the frequency of 
trading as 
 

𝑌𝑒𝑎𝑟𝑠𝑘 =
𝐿𝑎𝑠𝑡 𝐷𝑎𝑡𝑒𝑘 − 𝐹𝑖𝑟𝑠𝑡 𝐷𝑎𝑡𝑒𝑘

365.25 𝑑𝑎𝑦𝑠
 

 

 Electronic copy available at: https://ssrn.com/abstract=3167017 



12 
 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑘 =
𝑇𝑘

𝑌𝑒𝑎𝑟𝑠𝑘
 

 
where 𝑇𝑘 is the length of the 𝑆𝑘,𝑡, and 𝐹𝑖𝑟𝑠𝑡 𝐷𝑎𝑡𝑒𝑘 and 𝐿𝑎𝑠𝑡 𝐷𝑎𝑡𝑒𝑘 are the first and last dates of 
trading for 𝑆𝑘,𝑡, respectively. With this, we estimate the annualized Sharpe Ratio (aSR) as 
 

𝑎𝑆�̂�𝑘 =
E[{𝑆𝑘,𝑡}]𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑘

√V[{𝑆𝑘,𝑡}]𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑘

= 𝑆�̂�𝑘√𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑘 

 
With these now comparable 𝑎𝑆�̂�𝑘, we can estimate the variance of clustered trials as 
 

E [V[{𝑆�̂�𝑘}]] =
V[{𝑎𝑆�̂�𝑘}]

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑘∗
 

 
where 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑘∗ is the frequency of the selected strategy. We need to express the estimated 
variance of clustered trials in terms of the frequency of the selected strategy, in order to match 
the frequency of the 𝑆�̂� estimate used by the DSR equation (recall Sections 5 and 7). Otherwise, 
𝑆𝑅∗ would not be estimated on the same frequency as 𝑆�̂�. 
 
 
9. EXPERIMENTAL VALIDATION OF 𝐄[𝑲] 
We now design a Monte Carlo experiment to verify the accuracy of the ONC algorithm 
introduced in Section 8.1. Our goal is to create a 𝑁 𝑥 𝑁 correlation matrix 𝜌 from random data 
with a predefined number of blocks 𝐾, where 𝜌𝑖𝑗 is high inside a block and low outside the 
block. We can then verify that the ONC algorithm recovers the blocks we injected. 
 
9.1. GENERATION OF RANDOM BLOCK CORRELATION MATRICES 
First, given the tuple (𝑁,𝑀, 𝐾), we create a random block covariance matrix of size 𝑁𝑥𝑁, made 
up of 𝐾 blocks, each of size ≥ 𝑀. To do so, we randomly partition the 𝑁 indices into 𝐾 disjoint 
groups. Note that each block must be of size 𝑀 ≥ 2, as blocks of size 1 are difficult to identify as 
a cluster. 
 
Let us describe the procedure for randomly partitioning 𝑁 items into 𝐾 groups, each of size at 
least 𝑀. First, note that this is equivalent to randomly partitioning 𝑁′ = 𝑁 − 𝐾(𝑀 − 1) items 
into 𝐾 groups each of size at least 1, so we reduce our analysis to that. Next, consider randomly 
choosing 𝐾 − 1 distinct items, denoted as a set 𝐵, from the set 𝐴 = (1,… ,𝑁′ − 1), then add 𝑁′ 
to 𝐵, so that 𝐵 is of size 𝐾. Thus, 𝐵 contains 𝑖1, … , 𝑖𝐾, where 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝐾 = 𝑁′. Given 
B, consider the 𝐾 partition sets 𝐶1 = 0,… , 𝑖1 − 1, 𝐶2 = 𝑖1, … , 𝑖2 − 1, …, and 𝐶𝐾 = 𝑖𝐾−1, … , 𝑖𝐾 −
1. Given the 𝑖𝑗 are distinct, each partition contains at least 1 element as desired, and furthermore 
completely partitions the set (0, … , 𝑁′ − 1). In doing so, each set 𝐶𝑗 contains 𝑖𝑗 − 𝑖𝑗−1 elements 
for 𝑗 = 1,… , 𝐾, letting 𝑖0 = 0. We can generalize again by adding 𝑀 − 1 elements to each block. 
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Let each block 𝑘 = 1,… , 𝐾 have size 𝑥𝑘 by 𝑥𝑘, where 𝑥𝑘 ≥ 𝑀, thus implying 𝑥1 + ⋯+ 𝑥𝐾 =
 𝑁 ≥ 𝑀𝐾. First, for each block 𝑘, we create a time series 𝑆 of length 𝑇 that is made from IID 
standard Gaussians, then make copies of that to each column of a matrix 𝑋 of size (𝑇, 𝑥𝑘). 
Second, we add to each 𝑋𝑖𝑗 a random Gaussian with standard deviation 𝜎 > 0. By design, the 
columns of 𝑋 will be highly correlated for small 𝜎, and less correlated for large 𝜎. Third, we 
evaluate the covariance matrix Σ𝑋 for the columns of 𝑋, and add Σ𝑋 as a block to Σ. Fourth, we 
add to Σ another covariance matrix with one block but larger 𝜎. Finally, we derive the correlation 
matrix 𝜌 related to Σ.  
 
By design, 𝜌 will have 𝐾 blocks with high correlations inside each block, and low correlations 
otherwise. Exhibit 3 is an example of a correlation matrix constructed this way. See Snippet 3 in 
the Appendix for an implementation of this operation in python. 
 

[EXHIBIT 3 HERE] 
 
9.2. EXTRACTION OF 𝐄[𝑲] 
Using the above described procedure to create random 𝑁 𝑥 𝑁 correlation matrices with 𝐾 blocks 
of size at least 𝑀, we test the efficacy of the ONC algorithm. For our simulations, we chose 
𝑁 = 20, 40, 80, 160. We set 𝑀 = 2, and thus necessarily 𝐾

𝑁
≤ 1

2
. For each 𝑁, we test 𝐾 = 3, 6, …, 

up to 𝑁
2
. Finally, we test 1000 random generations for each of these parameter sets.  

 
Exhibit 4 displays various boxplots for these simulations. In particular, for 𝐾

𝑁
 in a given bucket, 

we display the boxplot of the ratio of 𝐾 predicted by the clustering (denoted E[𝐾]) to the actual 
𝐾 tested. Ideally, this ratio should be near 1. We observe that this clustering is very effective, 
frequently obtaining the correct number of clusters, with some outliers. 
 

[EXHIBIT 4 HERE] 
 
As a reminder, in a boxplot, the central box has the bottom set to the 25% percentile of the data 
(Q1), while the top is set to the 75% percentile (Q3). The interquartile range (IQR) is set to Q3-
Q1. The median is displayed as a line inside the box. The “whiskers” extend to the largest datum 
less than 𝑄3 + 1.5𝐼𝑄𝑅, and the smallest datum greater than 𝑄1– 1.5𝐼𝑄𝑅. All points outside that 
range are considered outliers. 
 
 
10. CONCLUSIONS 
In this paper we apply the False Strategy theorem, first proved in Bailey et al. [2014], to the 
prevention of false positives in finance. This requires the estimation of two meta-research 
variables that allow us to discount for the likelihood of “lucky findings.” We estimate these two 
meta-research variables with the help of the ONC algorithm. 
 
In particular, ONC extracts from a series of backtests the number of effectively uncorrelated 
trials. This number is useful in two applications: a) Estimating the expected value of the 
maximum Sharpe ratio, via the False Strategy Theorem (see Bailey and López de Prado [2014] 
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for an example); and b) deriving the FWER, via the Šidák correction (see Harvey and Liu [2015] 
for an example). Monte Carlo experiments demonstrate the precision of this method. 
 
We think that ONC has multiple uses in finance. Many investing problems involve the extraction 
of an unknown number of clusters. For example, ONC could be used to identify the optimal 
number of economic sectors from a risk perspective. Risk parity investors could then allocate 
assets in a more diversified way, where the peer groups are not set in advance. More generally, 
ONC could be useful in situations where researchers are interested in finding the most 
uncorrelated groups without a change of basis (like in principal components analysis, PCA). This 
could be particularly helpful in addressing multicollinearity problems, where the standard PCA 
solution forces researchers to work with variables removed of economic intuition. 
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APPENDIX 
 
 

A.1. THE BASE CLUSTERING ALGORITHM 
The purpose of this step is to perform a first-pass estimate of E[𝐾]. First, we transform the 
correlation matrix into a distance matrix. On this distance matrix, we apply the K-means 
algorithm on alternative target number of clusters. For each target number of clusters, we 
perform a stochastic optimization, repeating the clustering operation n_init times. Among all 
the clustering alternatives, we choose the solution that achieves the highest quality score, defined 
as the t-value of the silhouette scores. 
 

import numpy as np,pandas as pd 
#------------------------------------------------------------------------------ 
def clusterKMeansBase(corr0,maxNumClusters=10,n_init=10): 
    from sklearn.cluster import KMeans 
    from sklearn.metrics import silhouette_samples 
    dist,silh=((1-corr0.fillna(0))/2.)**.5,pd.Series() # distance matrix 
    for init in range(n_init): 
        for i in xrange(2,maxNumClusters+1): # find optimal num clusters 
            kmeans_=KMeans(n_clusters=i,n_jobs=1,n_init=1) 
            kmeans_=kmeans_.fit(dist) 
            silh_=silhouette_samples(dist,kmeans_.labels_) 
            stat=(silh_.mean()/silh_.std(),silh.mean()/silh.std()) 
            if np.isnan(stat[1]) or stat[0]>stat[1]: 
                silh,kmeans=silh_,kmeans_ 
    n_clusters = len( np.unique( kmeans.labels_ ) ) 
    newIdx=np.argsort(kmeans.labels_) 
    corr1=corr0.iloc[newIdx] # reorder rows 
    corr1=corr1.iloc[:,newIdx] # reorder columns 
    clstrs={i:corr0.columns[np.where(kmeans.labels_==i)[0] ].tolist() for \ 
                 i in np.unique(kmeans.labels_) } # cluster members 
    silh=pd.Series(silh,index=dist.index) 
    return corr1,clstrs,silh 

Snippet 1 – Base Clustering 
 
A.2. THE TOP-LEVEL CLUSTERING ALGORITHM 
The purpose of this step is to perform a second-pass estimate of E[𝐾]. We evaluate the quality 
score for each cluster within the first-pass solution. Those clusters with quality greater or equal 
than average remain unchanged. We re-run the base clustering on clusters with below-average 
quality. The outputs of these re-runs are preserved only if their cluster quality improves. 
 

#------------------------------------------------------------------------------ 
def makeNewOutputs(corr0,clstrs,clstrs2): 
    from sklearn.metrics import silhouette_samples 
    clstrsNew,newIdx={},[] 
    for i in clstrs.keys(): 
        clstrsNew[len(clstrsNew.keys())]=list(clstrs[i]) 
    for i in clstrs2.keys(): 
        clstrsNew[len(clstrsNew.keys())]=list(clstrs2[i]) 
    map(newIdx.extend, clstrsNew.values()) 
    corrNew=corr0.loc[newIdx,newIdx] 
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    dist=((1-corr0.fillna(0))/2.)**.5 
    kmeans_labels=np.zeros(len(dist.columns)) 
    for i in clstrsNew.keys(): 
        idxs=[dist.index.get_loc(k) for k in clstrsNew[i]] 
        kmeans_labels[idxs]=i 
    silhNew=pd.Series(silhouette_samples(dist,kmeans_labels),index=dist.index) 
    return corrNew,clstrsNew,silhNew 
#------------------------------------------------------------------------------ 
def clusterKMeansTop(corr0,maxNumClusters=10,n_init=10): 
    corr1,clstrs,silh=clusterKMeansBase(corr0,maxNumClusters=corr0.shape[1]-1,n_init=n_init) 
    clusterTstats={i:np.mean(silh[clstrs[i]])/np.std(silh[clstrs[i]]) for i in clstrs.keys()} 
    tStatMean=np.mean(clusterTstats.values()) 
    redoClusters=[i for i in clusterTstats.keys() if clusterTstats[i]<tStatMean] 
    if len(redoClusters)<=2: 
        return corr1,clstrs,silh 
    else: 
        keysRedo=[];map(keysRedo.extend,[clstrs[i] for i in redoClusters]) 
        corrTmp=corr0.loc[keysRedo,keysRedo] 
        meanRedoTstat=np.mean([clusterTstats[i] for i in redoClusters]) 
        corr2,clstrs2,silh2=clusterKMeansTop(corrTmp, \ 
            maxNumClusters=corrTmp.shape[1]-1,n_init=n_init) 
        # Make new outputs, if necessary 
        corrNew,clstrsNew,silhNew=makeNewOutputs(corr0, \ 
            {i:clstrs[i] for i in clstrs.keys() if i not in redoClusters},clstrs2) 
        newTstatMean=np.mean([np.mean(silhNew[clstrsNew[i]])/np.std(silhNew[clstrsNew[i]]) \ 
            for i in clstrsNew.keys()]) 
        if newTstatMean<=meanRedoTstat: 
            return corr1,clstrs,silh 
        else: 
            return corrNew,clstrsNew,silhNew 

Snippet 2 – Top Level of Clustering 
 
A.3. RANDOM CORRELATION BLOCK-MATRICES 
In this section we present an algorithm for the generation of random correlation block-matrices, 
with a pre-determined number of clusters. After generating these matrices, we can shuffle their 
rows (and columns), and apply the ONC algorithm. We can repeat this process thousands of 
times to evaluate ONC’s performance, while controlling for the matrix size and the number of 
clusters. 
 

import numpy as np,pandas as pd 
from scipy.linalg import block_diag 
from sklearn.utils import check_random_state 
#------------------------------------------------------------------------------ 
def cov2corr(cov): 
    # Derive the correlation matrix from a covariance matrix 
    std=np.sqrt(np.diag(cov)) 
    corr=cov/np.outer(std,std) 
    corr[corr<-1],corr[corr>1]=-1,1 # numerical error 
    return corr 
#------------------------------------------------------------------------------ 
def getCovSub(nObs,nCols,sigma,random_state=None): 
    # Sub correl matrix 
    rng = check_random_state(random_state) 
    if nCols==1:return np.ones((1,1)) 
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    ar0=rng.normal(size=(nObs,1)) 
    ar0=np.repeat(ar0,nCols,axis=1) 
    ar0+=rng.normal(scale=sigma,size=ar0.shape) 
    ar0=np.cov(ar0,rowvar=False) 
    return ar0 
#------------------------------------------------------------------------------ 
def getRndBlockCov(nCols,nBlocks,minBlockSize=1,sigma=1.,random_state=None): 
    # Generate a random correlation matrix with a given number of blocks 
    rng = check_random_state(random_state) 
    parts=rng.choice(range(1,nCols-(minBlockSize-1)*nBlocks),nBlocks-1,replace=False) 
    parts.sort() 
    parts=np.append(parts,nCols-(minBlockSize-1)*nBlocks) 
    parts=np.append(parts[0],np.diff( parts )) - 1 + minBlockSize 
    cov=None 
    for nCols_ in parts: 
        cov_=getCovSub(int(max(nCols_*(nCols_+1)/2.,100)),nCols_,sigma,random_state=rng) 
        if cov is None:cov=cov_.copy() 
        else:cov=block_diag(cov,cov_) 
    return cov 
#------------------------------------------------------------------------------ 
def randomBlockCorr(nCols,nBlocks,random_state=None,minBlockSize=1): 
    # Form block covar 
    rng = check_random_state(random_state) 
    cov0=getRndBlockCov(nCols,nBlocks,minBlockSize=minBlockSize,\ 
                                           sigma=.5,random_state=rng) # perfect block corr 
    cov1=getRndBlockCov(nCols,1,minBlockSize=minBlockSize,\ 
                                           sigma=1.,random_state=rng) # add noise 
    cov0+=cov1 
    corr0=cov2corr(cov0) 
    corr0=pd.DataFrame(corr0) 
    return corr0 

Snippet 3 – Random block correlation matrix creation 
 
A.4. MINIMUM VARIANCE ALLOCATION 
In section 8.2, we wish to evaluate the minimum variance allocation for the strategies within a 
cluster 𝑘 of size 𝑁𝑘. Note that the intra-cluster correlations will be high by design, and thus Σ𝑘 
may be ill-conditioned and difficult to invert. In practice, one could choose to approximate the 
weights by setting 𝑤𝑘,𝑖 proportional to 1

𝜎𝑖
2 as is typically done in inverse variance allocations. If 

more accuracy is desired, consider the following approximation. Let 𝜌 be the average off-
diagonal correlation in the correlation matrix for the cluster. Then, the covariance matrix is 
approximately 
 

Σk ≈ Σ𝑎𝑝𝑝𝑟𝑜𝑥 =  (
𝜎1

2 ⋯ 𝜌𝜎1𝜎𝑁𝑘
⋮ ⋱ ⋮

𝜌𝜎1𝜎𝑁𝑘 ⋯ 𝜎𝑁𝑘
2

) = 𝜌𝜎𝜎𝑇 + (1 − 𝜌)(
𝜎1

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑁𝑘

2
) 

 
where 
 

 Electronic copy available at: https://ssrn.com/abstract=3167017 



18 
 

𝜎 = (
𝜎1
⋮

𝜎𝑁𝑘

) 

 
This is a rank one update. If our goal is to take the inverse of Σ𝑎𝑝𝑝𝑟𝑜𝑥, we can utilize the 
Sherman-Morrison (SM) formula. Using the notation 
 

1
𝜎

=

(

 
 

1
𝜎1
⋮
1

𝜎𝑁𝑘)

 
 

 

 
then the SM formula gives us 
 

Σapprox
−1 =

1
1 − 𝜌

(

  
 

1
𝜎1

2 ⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

𝜎𝑁𝑘
2 )

  
 

−
𝜌

(1 − 𝜌)(1 + (𝑁𝑘 − 1)𝜌) (
1
𝜎) (

1
𝜎)

𝑇 

 

 
When computing the weights allocation, we are trying to evaluate Σapprox

−1 1. In this case, we find 
that  
 

𝑤𝑘,𝑖~ 
1
𝜎𝑖

2 − 
𝜌 ∑ 1

𝜎𝑗
𝑗∈𝐶𝑘

(1 + (𝑁𝑘 − 1)𝜌)𝜎𝑖
   

 
As is readily observable, if 𝜌 = 0, this reduces to the standard inverse variance allocation. 
Snippet 4 implements this procedure in python. 
 

import numpy as np,pandas as pd 
#------------------------------------------------------------------------------ 
def getIVP(cov,use_extended_terms=False): 
    # Compute the minimum-variance portfolio 
    ivp=1./np.diag(cov) 
    if use_extended_terms: 
        n=float(cov.shape[0]) 
        corr=cov2corr(cov) 
        # Obtain average off-diagonal correlation 
        rho=(np.sum(np.sum(corr))-n)/(n**2-n) 
        invSigma=np.sqrt(ivp) 
        ivp-=rho*invSigma*np.sum(invSigma)/(1.+(n-1)*rho) 
    ivp/=ivp.sum() 
    return ivp 

Snippet 4 – Obtain minimum variance portfolio  
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EXHIBITS 
 
 
 
 

 

 
Exhibit 1 – Structure of ONC’s base clustering stage 

 
This exhibit outlines the workflow within ONC’s base algorithm, highlighting the three ways in 
which it departs from the K-means algorithm: 1) The clustering is done on a distance of distances 
(�̃�), rather than on the distance matrix (𝐷); 2) it optimizes the Silhouette score; 3) it tries 
alternative initialization points to avoid local optima 
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Exhibit 2 – Structure of ONC’s higher-level stage 

 
This exhibit outlines ONC’s higher-level clustering, which seeks to reduce discrepancies across 
clusters quality. 
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Exhibit 3 – Example of a random block correlation matrix 
 
This exhibit plots a random block correlation matrix, generated using the method explained in 
section 9.1. Light colors indicate a high correlation, and dark colors indicate a low correlation. In 
this example, the number of blocks 𝐾 = 6, each of varying size, with a total of 𝑁 = 30 
instruments. 
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Exhibit 4 – Boxplots of estimated K / actual K for bucketed  𝐾

𝑁
 

 
This exhibit plots the ratio between the extracted number of clusters (E[𝐾]) and the actual 
number of clusters (𝐾), for various deciles of 𝐾 𝑁⁄ , where 𝑁𝑥𝑁 is the size of the correlation 
matrix. These results were obtained from numerous random simulations across a variety of 
matrix sizes and cluster counts, namely 𝑁 = 20, 40, 80, 160 and 𝐾 = 3, 6, …, up to 𝑁

2
.The ONC 

algorithm provides an accurate estimation of 𝐾 across all ratios of clusters per variable. 
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